【題目】如圖1,在正方形ABCD中,P是對(duì)角線BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線上,且PA=PE,PE交CD于F.

(1)證明:PC=PE;

(2)求CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.

【答案】(1)證明見解析(2)90°(3)AP=CE

【解析】

試題(1)、根據(jù)正方形得出AB=BC∠ABP=∠CBP=45°,結(jié)合PB=PB得出△ABP ≌△CBP,從而得出結(jié)論;(2)、根據(jù)全等得出∠BAP=∠BCP∠DAP=∠DCP,根據(jù)PA=PE得出∠DAP=∠E,即∠DCP=∠E,然后根據(jù)180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E得出答案;(3)、首先證明△ABP△CBP全等,然后得出PA=PC∠BAP=∠BCP,然后得出∠DCP=∠E,從而得出∠CPF=∠EDF=60°,然后得出△EPC是等邊三角形,從而得出AP=CE.

試題解析:(1)、在正方形ABCD中,AB=BC∠ABP=∠CBP=45°,

△ABP△CBP中,又∵ PB=PB ∴△ABP ≌△CBPSAS), ∴PA=PC∵PA=PE,∴PC=PE

(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,

∵PA=PE∴∠DAP=∠E, ∴∠DCP=∠E∵∠CFP=∠EFD(對(duì)頂角相等),

∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, 即∠CPF=∠EDF=90°;

(3)APCE

理由是:在正方形ABCD中,AB=BC∠ABP=∠CBP=45°,

△ABP△CBP中, 又∵ PB=PB ∴△ABP≌△CBPSAS), ∴PA=PC,∠BAP=∠BCP,

∵PA=PE,∴PC=PE,∴∠DAP=∠DCP, ∵PA=PC ∴∠DAP=∠E, ∴∠DCP=∠E

∵∠CFP=∠EFD(對(duì)頂角相等), ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,

∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC是等邊三角形,∴PC=CE,∴AP=CE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2,以D(﹣2,1)為直角頂點(diǎn)作該拋物線的內(nèi)接RtADB(即A.D.B均在拋物線上).直線AB必經(jīng)過一定點(diǎn),則該定點(diǎn)坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的直角坐標(biāo)系中,每個(gè)小方格都是邊長(zhǎng)為1的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(﹣3,﹣1).

(1)以O為中心作出△ABC的中心對(duì)稱圖形△A1B1C1,并寫出點(diǎn)B1坐標(biāo);

(2)以格點(diǎn)P為旋轉(zhuǎn)中心,將△ABC按順時(shí)針方向旋轉(zhuǎn)90°,得到△A′B′C′,且使點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的恰好落在△A1B1C1的內(nèi)部格點(diǎn)上(不含△A1B1C1的邊上),寫出點(diǎn)P的坐標(biāo),并畫出旋轉(zhuǎn)后的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)工程隊(duì)共同參與一項(xiàng)筑路工程,若先由甲、乙隊(duì)合作天,剩下的工程再由乙隊(duì)單獨(dú)做天可以完成,共需施工費(fèi)810萬元;若由甲、乙合作完成此項(xiàng)工程共需天,共需施工費(fèi)萬元.

1)求乙隊(duì)單獨(dú)完成這項(xiàng)工程需多少天?

2)甲、乙兩隊(duì)每天的施工費(fèi)各為多少萬元?

3)若工程預(yù)算的總費(fèi)用不超過萬元,則乙隊(duì)最少施工多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制度.若每月用水量不超過14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價(jià)m元收費(fèi);若每月用水量超過14噸,則超過部分每噸按市場(chǎng)價(jià)n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.

1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)價(jià)分別是多少?

2)設(shè)每月用水量為x噸(x>14),應(yīng)交水費(fèi)為y元,請(qǐng)寫出yx之間的函數(shù)關(guān)系式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2-4x+3

1在網(wǎng)格中,畫出該函數(shù)的圖象

2)(1)中圖象與軸的交點(diǎn)記為AB,若該圖象上存在一點(diǎn)C,且ABC的面積為3,求點(diǎn)C的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把球放在長(zhǎng)方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長(zhǎng)是( 。

A. 2cm B. 2.5cm C. 3cm D. 4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)為線段上一點(diǎn),且滿足

1)求直線的解析式及點(diǎn)的坐標(biāo);

2)如圖2為線段上一動(dòng)點(diǎn),連接,交于點(diǎn),試探索是否為定值?若是,求出該值;若不是,請(qǐng)說明理由;

3)點(diǎn)為坐標(biāo)軸上一點(diǎn),請(qǐng)直接寫出滿足為等腰三角形的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在活動(dòng)課上,小明和小紅合作用一副三角板來測(cè)量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調(diào)整自己的位置,設(shè)法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測(cè)得旗桿頂端M仰角為45°;小紅的眼睛與地面的距離(CD)是1.5m,用同樣的方法測(cè)得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點(diǎn)B、N、D在同一條直線上).求出旗桿MN的高度.(參考數(shù)據(jù): ,結(jié)果保留整數(shù).)

查看答案和解析>>

同步練習(xí)冊(cè)答案