如圖,、分別切⊙于點、,點是⊙上一點,且,則       度;若PA=4,則AO=       
120;.

試題分析:連接OA,BO,OP,由圓周角定理知可知∠AOB=2∠E,PA、PB分別切⊙O于點A、B,利用切線的性質(zhì)可知∠OAP=∠OBP=90°,根據(jù)四邊形內(nèi)角和可求得∠AOB=180°-∠P=180°-60°=120°,從而得出∠AEB的度數(shù);再由切線長定理得出∠APO=30°,根據(jù)三角函數(shù)求解即可:
如圖,連接OA,BO,OP,
∵PA、PB分別切⊙O,∴∠OAP=∠OBP=90°.
∵∠P=60°,∴∠AOB=180°-∠P=180°-60°=120°.
∵∠AOB=2∠E=120°,∴∠AEB=60°.
∵∠P=60°,∴∠APO=30°.
∴Rt△AOP中,,.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AD是正五邊形ABCDE的一條對角線,則∠BAD=       °.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點A、B、C、D在⊙O上,點D在∠D的內(nèi)部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O的半徑為4,點A、B、C在⊙O上,且∠ACB=45°,則弦AB的長是  .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,以點P(2,0)為圓心,為半徑作圓,點M(a,b) 是⊙P上的一點,設,則的取值范圍是       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖2,AD為⊙O直徑,作⊙O的內(nèi)接正三角形ABC,甲、乙兩人的作法分別如下:

對于甲、乙兩人的作法,可判斷
A.甲、乙均正確B.甲、乙均錯誤
C.甲正確,乙錯誤D.甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O的直徑AB與弦AC的夾角∠A=30°,過點C作⊙O的切線交AB的延長線于點P,PC=,則圖中陰影部分的面積為           (結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,線段與⊙O相切于點,連結(jié)、交⊙O于點D,已知OA=OB=6cm,AB=cm.
求:(1)⊙O的半徑;
(2)圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一個寬為2厘米的刻度尺(刻度單位:厘米),放在圓形玻璃杯的杯口上,刻度尺的一邊與杯口外沿相切,另一邊與杯口外沿兩個交點處的讀數(shù)恰好是3和9,那么玻璃杯的杯口外沿半徑為    厘米.

查看答案和解析>>

同步練習冊答案