【題目】如圖,是內(nèi)接三角形,點(diǎn)D是BC的中點(diǎn),請(qǐng)僅用無(wú)刻度的直尺,分別按下列要求畫圖.
(1)如圖1,畫出弦AE,使AE平分∠BAC;
(2)如圖2,∠BAF是的一個(gè)外角,畫出∠BAF的平分線.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】
(1)連接OD,延長(zhǎng)OD交于E,連接AE,根據(jù)垂徑定理可得,根據(jù)圓周角定理可得∠BAE=∠CAE,即可得答案;
(2)連接OD,延長(zhǎng)OD交于E,連接AE,反向延長(zhǎng)OD,交于H,作射線AH,由(1)可知∠BAE=∠CAE,由HE是直徑可得∠EAH=∠BAE+∠BAH=90°,根據(jù)平角的定義可得∠CAE+∠FAH=90°,即可證明∠BAH=∠FAH,可得答案.
(1)如圖,連接OD,延長(zhǎng)OD交于E,連接AE,
∵OE為半徑,D為BC中點(diǎn),
∴,
∴∠BAE=∠CAE,
∴AE為∠BAC的角平分線,弦即為所求.
(2)如圖,連接OD,延長(zhǎng)OD交于E,連接AE,反向延長(zhǎng)OD,交于H,作射線AH,
∵HE是直徑,點(diǎn)A在上,
∴∠EAH=∠BAE+∠BAH=90°,
∴∠CAE+∠FAH=90°,
由(1)可知∠BAE=∠CAE,
∴∠BAH=∠FAH,
∴AH平分∠BAF,射線即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問(wèn)卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:
(1)這次活動(dòng)共調(diào)查了多少人;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在一次購(gòu)物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為( )
A. 4 B. 3 C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)了矩形后,數(shù)學(xué)活動(dòng)小組開(kāi)展了探究活動(dòng).如圖1,在矩形中,,,點(diǎn)在上,先以為折痕將點(diǎn)往右折,如圖2所示,再過(guò)點(diǎn)作,垂足為,如圖3所示.
(1)在圖3中,若,則的度數(shù)為______,的長(zhǎng)度為______.
(2)在(1)的條件下,求的長(zhǎng).
(3)在圖3中,若,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)開(kāi)展了“行車安全,方便居民”的活動(dòng),對(duì)地下車庫(kù)作了改進(jìn).如圖,這小區(qū)原地下車庫(kù)的入口處有斜坡AC長(zhǎng)為13米,它的坡度為i=1:2.4,AB⊥BC,為了居民行車安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC=13°(此時(shí)點(diǎn)B、C、D在同一直線上).
(1)求這個(gè)車庫(kù)的高度AB;
(2)求斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價(jià)部門規(guī)定:該產(chǎn)品每千克售價(jià)不得超過(guò)90元,在銷售過(guò)程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表:
售價(jià)x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤(rùn),應(yīng)將售價(jià)定為多少元?
(3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤(rùn)w(元)最大?此時(shí)的最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:給定一個(gè)矩形,如果存在另一個(gè)矩形,它的周長(zhǎng)和面積分別是已知矩形的周長(zhǎng)和面積的一半,則這個(gè)矩形是給定矩形的“減半”矩形.如圖矩形是矩形ABCD的“減半”矩形.
請(qǐng)你解決下列問(wèn)題:
(1)當(dāng)矩形的長(zhǎng)和寬分別為1,2時(shí),它是否存在“減半”矩形?請(qǐng)作出判斷,并請(qǐng)說(shuō)明理由;
(2)邊長(zhǎng)為的正方形存在“減半”正方形嗎?如果存在,求出“減半”正方形的邊長(zhǎng);如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的解析式是y=x2﹣(k+2)x+2k﹣2.
(1)求證:此拋物線與x軸必有兩個(gè)不同的交點(diǎn);
(2)若拋物線與直線y=x+k2﹣1的一個(gè)交點(diǎn)在y軸上,求該二次函數(shù)的頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,解決問(wèn)題:
材料1:在研究數(shù)的整除時(shí)發(fā)現(xiàn):能被5、25、125、625整除的數(shù)的特征是:分別看這個(gè)數(shù)的末一位、末兩位、末三位、末四位即可,推廣成一條結(jié)論;末位能被整除的數(shù),本身必能被整除,反過(guò)來(lái),末位不能被整除的數(shù),本身也不可能被整除,例如判斷992250能否被25、625整除時(shí),可按下列步驟計(jì)算:
,為整數(shù),能被25整除
,不為整數(shù),不能被625整除
材料2:用奇偶位差法判斷一個(gè)數(shù)能否被11這個(gè)數(shù)整除時(shí),可把這個(gè)數(shù)的奇位上的數(shù)字與偶位上的數(shù)字分別加起來(lái),再求它們的差,看差能否被11整除,若差能被11整除,則原數(shù)能被11整除,反之則不能.
(1)若這個(gè)三位數(shù)能被11整除,則 ;在該三位數(shù)末尾加上和為8的兩個(gè)數(shù)字,讓其成為一個(gè)五位數(shù),該五位數(shù)仍能被11整除,求這個(gè)五位數(shù)
(2)若一個(gè)六位數(shù)p的最高位數(shù)字為5,千位數(shù)字是個(gè)位數(shù)字的2倍,且這個(gè)數(shù)既能被125整除,又能被11整除,求這個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com