【題目】點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC=65°,將一直角三角形的直角三角板的直角頂點(diǎn)放在點(diǎn)O.

1)如圖1,將三角板MON的一邊ON與射線OB重合,則∠MOC=___________;

2)如圖2,將三角板MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一定角度,此時(shí)OC是∠MOB的角平分線,求旋轉(zhuǎn)角∠BON和∠CON的度數(shù);

3)將三角板MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖3時(shí),∠NOC=AOM,求∠NOB的度數(shù).

【答案】125°225°370°

【解析】試題分析:(1)根據(jù)∠MON和∠BOC的度數(shù)可以得到∠MON的度數(shù);

2)根據(jù)角平分線的性質(zhì),由∠BOC=65°,可以求得∠BOM的度數(shù),然后由∠NOM-90°,可得∠BON的度數(shù),從而得解;

3)由∠BOC=65°,NOM=90°,NOC=AOM,從而可求得∠NOC的度數(shù),然后由∠BOC=65°,從而得解.

試題解析:1MON=90,BOC=65°

MOC=MON-BOC=90°-65°=25°

2∠BOC=65°,OC平分∠MOB

MOB=2BOC=130°

BON=MOB-MON=130°-90°=40°

CON=COB-BON=65°-40°=25°

3NOC=AOM AOM=4NOC BOC=65°

AOC=AOB-BOC=180°-65°=115°

MON=90°

AOM+NOC=AOC-MON=115°-90°=25°

4NOC+NOC=25°

NOC=5°

NOB=NOC+BOC=70°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,ADBC,EAB邊上一點(diǎn),BCE=15°,EFADDC于點(diǎn)F.

(1)依題意補(bǔ)全圖形,求∠FEC的度數(shù);

(2)若∠A=140°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點(diǎn)為M的拋物線y=a(x+1)2﹣4分別與x軸相交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸相交于點(diǎn)C(0,﹣3).

(1)求拋物線的函數(shù)表達(dá)式;
(2)判斷△BCM是否為直角三角形,并說明理由.
(3)拋物線上是否存在點(diǎn)N(點(diǎn)N與點(diǎn)M不重合),使得以點(diǎn)A,B,C,N為頂點(diǎn)的四邊形的面積與四邊形ABMC的面積相等?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD

1∠AOC=70°,∠DOF=90°,求∠EOF的度數(shù);

2OF平分∠COE,∠BOF=15°,若設(shè)∠AOE=x°

用含x的代數(shù)式表示∠EOF;

∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)直角∠AOB,∠COD有相同的頂點(diǎn)O,下列結(jié)論:①∠AOC=∠BOD;

∠AOC∠BOD=90°;③若OC平分∠AOB,則OB平分∠COD;④∠AOD的平分線與∠COB的平分線是同一條射線. 其中正確的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災(zāi),旱災(zāi)無情人有情.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.

1)求飲用水和蔬菜各有多少件?

2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門安排甲、乙兩種貨車時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來;

3)在(2)的條件下,如果甲種貨車每輛需付運(yùn)費(fèi)400元,乙種貨車每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司以每噸元的價(jià)格收購了噸某種藥材,若直接在市場(chǎng)上銷售,每噸的售價(jià)是元.該公司決定加工后再出售,相關(guān)信息如下表所示:

工藝

每天可加工藥材的噸數(shù)

成品率

成品售價(jià)

(元/

粗加工

14

80%

6000

精加工

6

60%

11000

(:①成品率80%指加工100噸原料能得到80噸可銷售藥材;②加工后的廢品不產(chǎn)生效益.)

受市場(chǎng)影響,該公司必須在天內(nèi)將這批藥材加工完畢.

(1)若全部粗加工,可獲利_______________________

(2)若盡可能多的精加工,剩余的直接在市場(chǎng)上銷售,可獲利_____________;

(3)若部分粗加工,部分精加工,恰好天完成,求可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示,三角形ABC是等邊三角形,DBC邊上的一點(diǎn),三角形ABD經(jīng)過旋轉(zhuǎn)后到達(dá)三角形ACE的位置.

(1)旋轉(zhuǎn)中心是哪一點(diǎn)?

(2)旋轉(zhuǎn)了多少度?

(3)如果MAB的中點(diǎn),那么經(jīng)過上述旋轉(zhuǎn)后,點(diǎn)M到了什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步驟作圖:①分別以點(diǎn)A,B為圓心,大于線段AB長度的一半為半徑畫弧,兩弧分別相交于點(diǎn)M,N;②作直線MN分別交AB,AC于點(diǎn)D,E,連結(jié)BE,則BE的長是(
A.
B.3
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案