【題目】如圖,升降平臺(tái)由三個(gè)邊長(zhǎng)為1.2米的菱形和兩個(gè)腰長(zhǎng)為1.2米的等腰三角形組成,其中平臺(tái)AM與底座A0N平行,長(zhǎng)度均為24米,點(diǎn)BB0分別在AMA0N上滑動(dòng)這種設(shè)計(jì)是利用平行四邊形的________;為了安全,該平臺(tái)作業(yè)時(shí)∠B1不得超過(guò)60°,則平臺(tái)高度(AA0)的最大值為________

【答案】不穩(wěn)定性; 4.8

【解析】

1)根據(jù)四邊形的不穩(wěn)定性即可解決問(wèn)題.

2)當(dāng)∠B1=60°時(shí),平臺(tái)AA0的高度最大,解直角三角形A1B0A0,可得A0A1的長(zhǎng),再由AA3=A3A2=A2A1=A1A0,即可解決問(wèn)題.

解:(1)因?yàn)樗倪呅尉哂胁环(wěn)定性,點(diǎn)B,B0分別在AMA0N上滑動(dòng) ,從而達(dá)到升降目的,因而這種設(shè)計(jì)利用了平行四邊形的不穩(wěn)定性;

2)由圖可知,當(dāng)∠B1=60°時(shí),平臺(tái)AA0的高度最大,=30°,B0A1=2A1C1=2.4,則A0A1=A1B0sinA1B0A0=2.4×=1.2

又∵AA3=A3A2=A2A1=A1A0=1.2,則AA0=4×1.2=4.8

故答案為:不穩(wěn)定性,4.8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,∠BAD60°

(1) 如圖1,點(diǎn)E為線段AB的中點(diǎn),連接DE、CE.若AB4,求線段EC的長(zhǎng)

(2) 如圖2,M為線段AC上一點(diǎn)(不與AC重合),以AM為邊向上構(gòu)造等邊三角形AMN,線段MNAD交于點(diǎn)G,連接NCDM,Q為線段NC的中點(diǎn),連接DQ、MQ,判斷DMDQ的數(shù)量關(guān)系,并證明你的結(jié)論

(3) (2)的條件下,若AC,請(qǐng)你直接寫(xiě)出DMCN的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班準(zhǔn)備外出春游,有3名教師參加。有甲乙兩家旅行社,其收費(fèi)標(biāo)準(zhǔn)都一樣,但都表示可以?xún)?yōu)惠師生.甲旅行社承諾:教師免費(fèi),學(xué)生按8折收費(fèi);乙旅行社承諾:師生一律按7折收費(fèi).

問(wèn):(1)如果由旅行社籌辦春游活動(dòng),在什么條件下,兩家旅行社所收費(fèi)用相等.

2)如果這個(gè)班有45名學(xué)生,選擇哪家旅行社較恰當(dāng).請(qǐng)說(shuō)明選擇的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OA1B1C的對(duì)角線 A1C和OB1交于點(diǎn)M1;以M1A1為對(duì)角線作第二個(gè)正方形A2A1B2M1,對(duì)角線A1M1和A2B2交于點(diǎn)M2;以M2A1為對(duì)角線作第三個(gè)正方形A3A1B3M2,對(duì)角線A1M2和A3B3交于點(diǎn)M3;……依此類(lèi)推,這樣作的第n 個(gè)正方形對(duì)角線交點(diǎn)Mn的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列快車(chē)從甲地駛往乙地,一列慢車(chē)從乙地駛往甲地,兩車(chē)同時(shí)出發(fā),設(shè)慢車(chē)行駛的時(shí)間為xh),兩車(chē)之間的距離為ykm),圖中的折線表示yx之間的函數(shù)關(guān)系,根據(jù)圖像回答以下問(wèn)題:

1)請(qǐng)?jiān)趫D中的( )內(nèi)填上正確的值,并寫(xiě)出兩車(chē)的速度和.

2)求線段BC所表示的yx之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

3)請(qǐng)直接寫(xiě)出兩車(chē)之間的距離不超過(guò)15km的時(shí)間范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是內(nèi)切圓,E,F(xiàn),D分別為切點(diǎn),則tan∠OBD的值為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,MN分別是AD,BC的中點(diǎn),AND=90°,連接CMDN于點(diǎn)O

1)求證:ABN≌△CDM;

2)過(guò)點(diǎn)CCEMN于點(diǎn)E,交DN于點(diǎn)P,若PE=1,1=2,求AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為鼓勵(lì)市民節(jié)約用水,特制定如下的收費(fèi)標(biāo)準(zhǔn):若每月每戶(hù)用水不超過(guò)10立方米,則按3/立方米的水價(jià)收費(fèi),并加收0.2/立方米的污水處理費(fèi);若超過(guò)10立方米,則超過(guò)的部分4/立方米的水價(jià)收費(fèi),污水處理費(fèi)不變

1)若小華家5月份的用水量為8立方米,那么小華家5月份的水費(fèi)為_______元;

2)若小華家6月份的用水量為15立方米,那么小華家6月份的水費(fèi)為_______元;

3)若小華家某個(gè)月的用水量為aa10)立方米,求小華家這個(gè)月的水費(fèi)(用含a的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,DEAC,AEBD

1)求證:四邊形AODE是矩形;

2)若AB=4,∠BCD=120°,求四邊形AODE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案