【題目】如圖,已知拋物線y=ax2+bx+6(a≠0)x軸交于點(diǎn)A(-3,0)和點(diǎn)B(1,0),與y軸交于點(diǎn)C.

(1)求拋物線y的函數(shù)表達(dá)式及點(diǎn)C的坐標(biāo);

(2)點(diǎn)M為坐標(biāo)平面內(nèi)一點(diǎn),若MA=MB=MC,求點(diǎn)M的坐標(biāo);

(3)在拋物線上是否存在點(diǎn)E,使ABE=ACB?若存在,求出滿足條件的所有點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)y=-2x2-4x+6;(2)M(-1,);(3)E1(-2,6),E2(-4,-10) .

【解析】1)根據(jù)拋物線過(guò)A、B兩點(diǎn),待定系數(shù)法求解可得;;

(2)由(1)知拋物線對(duì)稱軸為直線x=-1,設(shè)HAC的中點(diǎn),求出直線AC的垂直平分線的解析式即可得解;

(3)①過(guò)點(diǎn)Ay軸于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)D,證明ΔAOFΔCOA,求得,分別求出直線AF、BC的解析式的交點(diǎn),求出,

根據(jù)ABE=ACB求出ABE=2,易求E點(diǎn)坐標(biāo).

1)把A(-3,0)、B(1,0)代入y=ax2+bx+6得,

,解得

y=-2x2-4x+6,

x=0,則y=6,

C(0,6);

(2)=-2(x+1)2+8,

∴拋物線的對(duì)稱軸為直線x=-1.

設(shè)H為線段AC的中點(diǎn),故H(,3).

設(shè)直線AC的解析式為:y=kx+m,則有

,解得,,

y=2x+6

設(shè)過(guò)H點(diǎn)與AC垂直的直線解析式為:,

b=

∴當(dāng)x=-1時(shí),y=

M(-1,

(3)①過(guò)點(diǎn)Ay軸于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)D

∵∠ACO+CAO=90°,DAO+CAO=90°

∴∠DAO=ACO

∵∠ACO=ACO

ΔAOFΔCOA

OA=3,OC=6

直線AF的解析式為:

直線BC的解析式為:

,解得

ACB=

ABE=ACB

ABE=2

過(guò)點(diǎn)A軸,連接BM交拋物線于點(diǎn)E

AB=4,ABE=2

AM=8

M(-3,8)

直線BM的解析式為:

,解得

y=6

E(-2,6)

②當(dāng)點(diǎn)Ex軸下方時(shí),過(guò)點(diǎn)E,連接BE,設(shè)點(diǎn)E

ABE=2

m=-4m=1(舍去)

可得E(-4,-10)

綜上所述E1(-2,6),E2(-4,-10)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(探索發(fā)現(xiàn))有絕對(duì)值的定義可得,數(shù)軸上表示數(shù)的點(diǎn)到原點(diǎn)的距離為.小麗進(jìn)一步探究發(fā)現(xiàn),在數(shù)軸上,表示35的兩點(diǎn)之間的距離為;表示5的兩點(diǎn)之間的距離為;表示的兩點(diǎn)之間的距離為.

(概括總結(jié))根據(jù)以上過(guò)程可以得出:數(shù)軸上,表示數(shù)和數(shù)的兩點(diǎn)之間的距離為.

(問(wèn)題解決)

1)若,則________;

2)若,則________;

3)若,則________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知:E是AOB的平分線上一點(diǎn),ECOA,EDOB,垂足分別為C、D.求證:

(1)ECD=EDC;

(2)OE是CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】來(lái)自某綜合市場(chǎng)財(cái)務(wù)部的報(bào)告表明,商場(chǎng)201414月份的投資總額一共是2065萬(wàn)元,商場(chǎng)2014年第一季度每月利潤(rùn)統(tǒng)計(jì)圖和201414月份利潤(rùn)率統(tǒng)計(jì)圖如下(利潤(rùn)率=利潤(rùn)÷投資金額).則商場(chǎng)20144月份利潤(rùn)是__萬(wàn)元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線EF分別與直線ABCD相交于點(diǎn)E,F,ABCD,EM平分∠BEF,FM平分∠EFD.

1)求證:∠EMF90°

2)如圖2,若FN平分∠MFDEM的延長(zhǎng)線于點(diǎn)N,且∠BEN與∠EFN的比為43,求∠N的度數(shù).

3)如圖3,若點(diǎn)H是射線EA之間一動(dòng)點(diǎn),FG平分∠HFE,過(guò)點(diǎn)GGQEM于點(diǎn)Q,請(qǐng)猜想∠EHF與∠FGQ的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

8+(﹣10+(﹣2)﹣(﹣5

235|3|

③(﹣1+1.25+(﹣8.5+10

④(×(﹣12

⑤(﹣199×5(用簡(jiǎn)便方法計(jì)算)

10×(﹣)﹣+(﹣3×(﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過(guò)點(diǎn)DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,先填空后證明.

已知: ∠1+∠2=180° 求證:a∥b.

證明:∵ ∠1=∠3_____,∠1+∠2=180°_____,

∴ ∠3+∠2=180°______.

∴ a∥b_____.

請(qǐng)你再寫出一種證明方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),ABC 的頂點(diǎn) A (-2,0),點(diǎn) B,C分別在x軸和y軸的正半軸上,ACB=90°,BAC=60°

(1)求點(diǎn) B 的坐標(biāo);

(2)點(diǎn) P AC延長(zhǎng)線上一點(diǎn),過(guò) P PQx軸交 BC 的延長(zhǎng)線于點(diǎn) Q ,若點(diǎn) P 的橫坐標(biāo)為t,線段PQ的長(zhǎng)為d,請(qǐng)用含t的式子表示d;

(3) 在(2)的條件下,當(dāng)PA=d時(shí),E是線段CQ上一點(diǎn),連接OE,BP,若OE=BP,求∠APB-OEB的度數(shù)..

查看答案和解析>>

同步練習(xí)冊(cè)答案