【題目】在正方形ABCD中,P是BC上一點,且BP=3PC,Q是CD得中點.
(1)證明△ADQ∽△QCP;
(2)求證:AQ⊥QP.

【答案】
(1)證明:∵BP=3PC,Q是CD的中點

= ,又∵∠ADQ=∠QCP=90°,

∴△ADQ∽△QCP


(2)證明:∵△ADQ∽△QCP,

∴∠AQD=∠QPC,∠DAQ=∠PQC,

∴∠PQC+∠DQA=∠DAQ+∠AQD=90°,

∴AQ⊥QP


【解析】(1)根據(jù)BP=3PC和Q是CD的中點,可以求得 ,即可求證△ADQ∽△QCP;(2)根據(jù)△ADQ∽△QCP可以求得∠PQC+∠DQA=90°,即可解題.
【考點精析】本題主要考查了正方形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,過點D作DE∥AC且DE=OC,連接CE,OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為4,∠ABC=60°,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形EFGH的三個頂點E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.
(1)求證:∠HEA=∠CGF;
(2)當(dāng)AH=DG時,求證:菱形EFGH為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某活動小組為了估計裝有5個白球和若干個紅球(每個球除顏色外都相同)的袋中紅球接近多少個,在不將袋中球倒出來的情況下,分小組進(jìn)行摸球試驗,兩人一組,共20組進(jìn)行摸球?qū)嶒灒渲幸晃粚W(xué)生摸球,另一位學(xué)生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做400次試驗,匯總起來后,摸到紅球次數(shù)為6000次.
(1)估計從袋中任意摸出一個球,恰好是紅球的概率是多少?
(2)請你估計袋中紅球接近多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級學(xué)生的體重情況,隨機(jī)抽取了九年級部分學(xué)生進(jìn)行調(diào)查,將抽取學(xué)生的體重情況繪制如下不完整的統(tǒng)計圖表,如圖表所示,請根據(jù)圖表信息回答下列問題:

體重頻數(shù)分布表

組邊

體重(千克)

人數(shù)

A

45≤x<50

12

B

50≤x<55

m

C

55≤x<60

80

D

60≤x<65

40

E

65≤x<70

16

(1)填空:①m=__(直接寫出結(jié)果);

在扇形統(tǒng)計圖中,C組所在扇形的圓心角的度數(shù)等于__度;

(2)如果該校九年級有1000名學(xué)生,請估算九年級體重低于60千克的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在正方形ABCD中,P是對角線AC上的一點,點E在BC的延長線上,且PE=PB.
(1)求證:△BCP≌△DCP;
(2)求證:∠DPE=∠ABC;
(3)把正方形ABCD改為菱形,其它條件不變(如圖②),若∠ABC=58°,則∠DPE=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求下列各式中的x:

(1)16x2-361=0;       (2)(x-1)2=25;

(3)27=216;       (4) (x-2)3 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CDAB于點D,BEAC于點E,CD、BE交于點O,且AO平分BAC,則圖中的全等三角形共有( 。

A. 1對 B. 2對 C. 3對 D. 4對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:( 1+tan60°+|﹣ |﹣

查看答案和解析>>

同步練習(xí)冊答案