【題目】某校為了迎接體育中考,了解學生的體質(zhì)情況,學校隨機調(diào)查了本校九年級名學生“秒跳繩”的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:

秒跳繩次數(shù)的頻數(shù)、頻率分布表

秒跳繩次數(shù)的頻數(shù)分布直方圖

根據(jù)以上信息,解答下列問題:

1)表中, ;

2)請把頻數(shù)分布直方圖補充完整;

3)若該校九年級共有名學生,請你估計“秒跳繩”的次數(shù)以上(含次)的學生有多少人?

【答案】(1);(2)詳見解析;(3336

【解析】

1)根據(jù)0≤x20的頻數(shù)除以頻率求出總?cè)藬?shù),進而求出a,m的值即可;

2)求出40≤x60的頻數(shù),補全條形統(tǒng)計圖即可;

3)求出“30秒跳繩的次數(shù)60次以上(含60次)的頻率,乘以600即可得到結(jié)果.

1)根據(jù)題意得:a=10÷5÷0.1=0.2,b=0.14×5÷0.1=7m=50-5+10+7+12=16;

故答案為:0.216;

2)如圖所示,柱高為;

3(人)

“30秒跳繩的次數(shù)60次以上(含60次)的學生約有336人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點,直線ABy軸交于點C.

(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

(2)AOC的面積;

(3)求不等式kx+b-<0的解集(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知兩點,且滿足,點是射線上的動點(不與重合),將線段平移到,使點與點對應,點與點對應,連接,.

1)求出點和點的坐標;

2)設(shè)三角形面積為,若,求的取值范圍;

3)設(shè),,請給出,,滿足的數(shù)量關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,平行四邊形OABC的邊OAx軸的正半軸上,AC兩點的坐標分別為(2,0)、(1,2),點B在第一象限,將直線y=-2x沿y軸向上平移mm0)個單位.若平移后的直線與邊BC有交點,則m的取值范圍是_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣2mx+nm0)的頂點為A,與x軸交于BC兩點(點B在點C左側(cè)),與y軸正半軸交于點D,連接AD并延長交x軸于E,連AC、DCSDECSAEC=34

1)求點E的坐標;

2AEC能否為直角三角形?若能,求出此時拋物線的函數(shù)表達式;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,將一張正方形紙片,剪成四個大小形狀一樣的小正方形,然后將其中的一個小正方形再按同樣的方法剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)下去.

1)填寫下表:

剪的次數(shù)

1

2

3

4

5

正方形個數(shù)

4

7

10

   

   

2)如果剪了8次,共剪出   個小正方形.

3)如果剪n次,共剪出   個小正方形.

4)設(shè)最初正方形紙片為1,則剪n次后,最小正方形的邊長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=8,AO=BO,點M是射線CO上的一個動點,∠AOC=60°,則當△ABM為直角三角形時,AM的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】釣魚島是我國的神圣領(lǐng)土,中國人民維護國家領(lǐng)土完整的決心是堅定的,多年來,我國的海監(jiān)、漁政等執(zhí)法船定期開赴釣魚島巡視.某日,我海監(jiān)船(A處)測得釣魚島(B處)距離為20海里,海監(jiān)船繼續(xù)向東航行,在C處測得釣魚島在北偏東45°的方向上,距離為10海里,求AC的距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列各式:

13×12×22

13+239×22×32

13+23+3336×32×42

13+23+33+43100×42×52

回答下面的問題:

(1)猜想:13+23+33+…+(n1)3+ n3________.

(2)利用你得到的(1)中的結(jié)論,計算13+23+33+…+993+1003的值.

(3)計算:213+223+…+993+1003的值.

查看答案和解析>>

同步練習冊答案