精英家教網 > 初中數學 > 題目詳情

【題目】如圖:我漁政310船在南海海面上沿正東方向勻速航行,A點觀測到我漁船C在北偏東60°方向的我國某傳統(tǒng)漁場捕魚作業(yè).若漁政310船航向不變,航行半小時后到達B,觀測到我漁船C在東北方向上.:漁政310船再按原航向航行多長時間,離漁船C的距離最近?(漁船C捕魚時移動距離忽略不計,結果不取近似值)

【答案】漁政310船再按原航向航行 小時后,離漁船C的距離最近

【解析】

先找出漁政船310離漁船C的距離的位置:因為漁政船310的航線是在直線AB上,點C到直線AB上的垂線段最短,所以作CDAB,AB的延長線于D,CD=x,再用x表示出AB的長,根據行程關系列方程即可解出。

:CDAB,AB的延長線于D,則當漁政310船航行到D處時,離漁船C的距離最近.CD長為x,RtACD,AD=CD tan 60°= x,RtBCD,BD=CD=x,AB=AD-BD= x-x=( -1)x,設漁政船從B航行到D需要t小時, t=BD=x,解得t= = .

:漁政310船再按原航向航行 小時后,離漁船C的距離最近

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,BC=2AB=4,AE平分∠BAD交邊BC于點E,AEC的分線交AD于點F,以點D為圓心,DF為半徑畫圓弧交邊CD于點G,則的長為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一條單車道的拋物線形隧道如圖所示.隧道中公路的寬度AB=8m,隧道的最高點C到公路的距離為6m.

(1)建立適當的平面直角坐標系,求拋物線的表達式;

(2)現(xiàn)有一輛貨車的高度是4.4m,貨車的寬度是2m,為了保證安全,車頂距離隧道頂部至少0.5m,通過計算說明這輛貨車能否安全通過這條隧道.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在正方形ABCD中,點EAD的中點,連接BE,BF平分∠EBCCD于點F,交AC于點G,將CGF沿直線GF折疊至C′GF,BDC′GF相交于點M、N,連接CN,若AB=6,則四邊形CNC′G的面積是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點,分別是銳角兩邊上的點,分別以點,為圓心,以,的長為半徑畫弧,兩弧相交于點,連接,

1)請你判斷所畫四邊形的形狀,并說明理由;

2)若,請判斷此四邊形的形狀,并說明理由;

3)在(2)的條件下,連接,若厘米,,求線段的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=kx+b的圖象與x軸交于點A,與反比例函數y=(x>0)的圖象交于點B(2,n),過點B作BC⊥x軸于點C,點P(3n﹣4,1)是該反比例函數圖象上的一點,且∠PBC=∠ABC,求反比例函數和一次函數的表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數的圖象上,從左向右第3個正方形中的一個頂點A的坐標為,陰影三角形部分的面積從左向右依次記為、、、、,則的值為______用含n的代數式表示,n為正整數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數ykx+bk0)與反比例函數ym0)的圖象相交于A、B兩點,過點AADx軸于點D,AO5,ODAD,B點的坐標為(﹣6,n).

1)求一次函數和反比例函數的表達式;

2Py軸上一點,且△AOP是等腰三角形,請直接寫出所有符合條件的P點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,BD平分∠ABC,AEBD于點O,交BC于點E,ADBC,連接CD

(1)求證:AOEO;

(2)若AEABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結論.

查看答案和解析>>

同步練習冊答案