【題目】如圖,在RtABC中,∠C=90°,∠A=30°,AB=4.若動點(diǎn)D在線段AC上(不與點(diǎn)A、C重合),過點(diǎn)DDEACAB邊于點(diǎn)E.點(diǎn)A關(guān)于點(diǎn)D的對稱點(diǎn)為點(diǎn)F,以FC為半徑作⊙C,當(dāng)DE=_______時(shí),⊙C與直線AB相切.

【答案】

【解析】

求出AB上的高,CH,即可得出圓的半徑,證△ADE∽△ACB得出比例式,代入求出即可.

CCHABH,

∵∠ACB=90°,BC=2,AB=4AC=6,

∴由三角形面積公式得:BCAC=ABCH,

CH=3,

分為兩種情況:①如圖,

CF=CH=3,

AF=6-3=3,

AF關(guān)于D對稱,

DF=AD=

DEBC,

∴△ADE∽△ACB,

,

DE=;

②如圖2

CF=CH=3,

AF=6+3=9,

AF關(guān)于D對稱,

DF=AD=4.5,

DEBC

∴△ADE∽△ACB,

,

DE=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于 x 的函數(shù) y=(m﹣1)x2+2x+m 圖象與坐標(biāo)軸只有 2 個(gè)交點(diǎn),則m=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c經(jīng)過A、BC三點(diǎn),已知點(diǎn)A(﹣30),B0m),C10).

1)求m值;

2)設(shè)點(diǎn)P是直線AB上方的拋物線上一動點(diǎn)(不與點(diǎn)A、B重合).

①過點(diǎn)Px軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PDAB于點(diǎn)D.動點(diǎn)P在什么位置時(shí),PDE的周長最大,求出此時(shí)P點(diǎn)的坐標(biāo);

②連接AP,并以AP為邊作等腰直角APQ,當(dāng)頂點(diǎn)Q恰好落在拋物線的對稱軸上時(shí),求出對應(yīng)的點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從相距480kmA、B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),并以各自的速度勻速行駛,途徑C地,甲車到達(dá)C地停留1小時(shí),因有事按原路原速返回A地.乙車從B地直達(dá)A地,兩車同時(shí)到達(dá)A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖,結(jié)合圖象信息解答下列問題:

1)乙車的速度是   千米/時(shí),t  小時(shí);

2)求甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)直接寫出乙車出發(fā)多長時(shí)間兩車相距120千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點(diǎn),過點(diǎn)軸于點(diǎn),過點(diǎn)軸于點(diǎn),連接、,下列說法正確的是(

A. 點(diǎn)和點(diǎn)關(guān)于原點(diǎn)對稱 B. 當(dāng)時(shí),

C. D. 當(dāng)時(shí),、都隨的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:的直徑,是弦,,延長到點(diǎn),使得.

(1)求證:的切線;

(2),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=(m+2x22m+2xm+5,其中m+20

1)求該二次函數(shù)的對稱軸方程;

2)過動點(diǎn)C0n)作直線ly軸.

①當(dāng)直線l與拋物線只有一個(gè)公共點(diǎn)時(shí),求nm的函數(shù)關(guān)系;

②若拋物線與x軸有兩個(gè)交點(diǎn),將拋物線在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.當(dāng)n7時(shí),直線l與新的圖象恰好有三個(gè)公共點(diǎn),求此時(shí)m的值;

3)若對于每一個(gè)給定的x的值,它所對應(yīng)的函數(shù)值都不小于1,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2-2mx+2m≠0)與y軸交于點(diǎn)A,其對稱軸與x軸交于點(diǎn)B

1)求點(diǎn)AB的坐標(biāo);

2)點(diǎn)C,Dx軸上(點(diǎn)C在點(diǎn)D的左側(cè)),且與點(diǎn)B的距離都為2,若該拋物線與線段CD有兩個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列問題中,兩個(gè)變量成反比例的是( 。

A.長方形的周長確定,它的長與寬

B.長方形的長確定,它的周長與寬

C.長方形的面積確定,它的長與寬

D.長方形的長確定,它的面積與寬

查看答案和解析>>

同步練習(xí)冊答案