【題目】如圖,已知直角梯形,,,過(guò)點(diǎn)作,垂足為點(diǎn),,,點(diǎn)是邊上的一動(dòng)點(diǎn),過(guò)作線段的垂直平分線,交于點(diǎn),并交射線于點(diǎn).
(1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),求的長(zhǎng);
(2)設(shè),,求與的函數(shù)關(guān)系式,并寫(xiě)出定義域;
(3)如圖2,聯(lián)結(jié),當(dāng)是等腰三角形時(shí),求的長(zhǎng).
【答案】(1)BC=5;(2);(3)的長(zhǎng)為或3或.
【解析】
(1)根據(jù)垂直平分線性質(zhì)可知,設(shè),,在中用勾股定理求出,即可解答;
(2)聯(lián)結(jié),,在中,,在中,,消去二次項(xiàng)即可得到與的函數(shù)關(guān)系式;根據(jù)點(diǎn)是邊上的一動(dòng)點(diǎn)結(jié)合(1)即可得出的定義域;
(3)分三種情況討論,分別畫(huà)出圖形,根據(jù)相等的邊用勾股定理列方程求解即可.
解:(1)∵梯形中,,,,
∴,
∵是線段的垂直平分線,
∴,
在中,,
又∵,,設(shè),,
,
∴,
∴.
(2)聯(lián)結(jié),,
∵是線段的垂直平分線,
∴
∵,,
∴
在中,
在中,
∴
∴
(3)在中,,,
∴,
當(dāng)是等腰三角形時(shí)
①∵
∴
∵
∴
∴
②
取中點(diǎn),聯(lián)結(jié)
∵為的中點(diǎn)
∴為梯形中位線
∴
∵
∴為中點(diǎn),
∴此時(shí)與重合
∴
③
聯(lián)結(jié)并延長(zhǎng)交延長(zhǎng)線于點(diǎn)
此時(shí).
∴,,
∴,
∴在中,,
∵
∴解得,(不合題意含去)
∴綜上所述,當(dāng)是等腰三角形時(shí),的長(zhǎng)為或3或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=25°,∠ADC=115°,O為AB的中點(diǎn),以點(diǎn)O為圓心、AO長(zhǎng)為半徑作圓,恰好點(diǎn)D在⊙O上,連接OD,若∠EAD=25°,下列說(shuō)法中不正確的是( )
A.D是劣弧 的中點(diǎn)
B.CD是⊙O的切線
C.AE∥OD
D.∠DOB=∠EAD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于三個(gè)數(shù)a,b,c,M表示a,b,c這三個(gè)數(shù)的平均數(shù),min表示a,b,c這三個(gè)數(shù)中最小的數(shù),如:
M,min=-1;
M,min=;
解決下列問(wèn)題:
(1) 填空:min{ a, a-1, a+2 }=______________;
(2) 若min=2,則x的取值范圍是______________;
(3) ①若M=min,那么x=______________;
②根據(jù)①,你發(fā)現(xiàn)結(jié)論“若M=min,則______________;(填a,b,c的大小關(guān)系);
③運(yùn)用②解決問(wèn)題:(寫(xiě)出求解的過(guò)程)
若M=min,
求x+y 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了在九月份迎接高一年級(jí)的新生,決定將學(xué)生公寓樓重新裝修,現(xiàn)學(xué)校招用了甲、乙兩個(gè)工程隊(duì).若兩隊(duì)合作,8天就可以完成該項(xiàng)工程;若由甲隊(duì)先單獨(dú)做3天后,剩余部分由乙隊(duì)單獨(dú)做需要18天才能完成.
(1)求甲、乙兩隊(duì)工作效率分別是多少?
(2)甲隊(duì)每天工資3000元,乙隊(duì)每天工資1400元,學(xué)校要求在12天內(nèi)將學(xué)生公寓樓裝修完成,若完成該工程甲隊(duì)工作m天,乙隊(duì)工作n天,求學(xué)校需支付的總工資w(元)與甲隊(duì)工作天數(shù)m(天)的函數(shù)關(guān)系式,并求出m的取值范圍及w的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,E是BC的中點(diǎn),DE交AC于點(diǎn)F,則OF的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別是BE,CD的中點(diǎn),
(1)求證:△AMN是等邊三角形.
(2)當(dāng)把△ADE繞A點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),CD=BE是否仍然成立?若成立請(qǐng)證明,若不成立請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用)
A方法:剪6個(gè)側(cè)面;
B方法:剪4個(gè)側(cè)面和5個(gè)底面.
現(xiàn)有38張硬紙板,裁剪時(shí)x張用A方法,其余用B方法.
(1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,則能做多少個(gè)盒子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將直角三角形ACB, ,AC=6,沿CB方向平移得直角三角形DEF,BF=2,DG=,陰影部分面積為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com