【題目】為了推進書香校園建設(shè),加強學(xué)生課外閱讀,某校開展了走近名家名篇的主題活動;學(xué)校隨機抽取了部分學(xué)生,對他們一周的課外閱讀時間進行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分,如下:

時間(單位:

頻數(shù)(人數(shù))

頻率

2

0.04

3

0.06

15

0.30

0.50

5

請根據(jù)圖表信息回答下列問題:

1)頻數(shù)分布表中的_________,___________

2)將頻數(shù)分布直方圖補充完整;

3)學(xué)校將每周課外閱讀時間在8小時以上的學(xué)生評為閱讀之星,請你估計該校1200名學(xué)生中評為閱讀之星的有多少人?

【答案】1;;(2)詳見解析;(3120.

【解析】

1)由閱讀時間為0t≤2的頻數(shù)除以頻率求出總?cè)藬?shù),確定出mn的值即可;
2)補全條形統(tǒng)計圖即可;
3)由閱讀時間在8小時以上的百分比乘以1200即可得到結(jié)果.

解:(1)根據(jù)題意得:2÷0.04=50(人),
m=50-2+3+15+5=25;n=5÷50=0.10;
故答案為:;

2)閱讀時間為的學(xué)生有25人,補全條形統(tǒng)計圖,如圖所示:

3)根據(jù)題意得:(人),

則該校1200名學(xué)生中評為閱讀之星的有120.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某乳品公司向某地運輸一批牛奶,由鐵路運輸每千克需運費0.60元,由公路運輸,每千克需運費0.30元,另需補助600元

(1)設(shè)該公司運輸?shù)倪@批牛奶為x千克,選擇鐵路運輸時,所需運費為y1元,選擇公路運輸時,所需運費為y2元,請分別寫出y1、y2與x之間的關(guān)系式;

(2)若公司只支出運費1500元,則選用哪種運輸方式運送的牛奶多?若公司運送1500千克牛奶,則選用哪種運輸方式所需費用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是邊長為3的等邊三角形,點D是邊BC上的一點,且BD1,以AD為邊作等邊△ADE,過點EEFBC,交AC于點F,連接BF,則下列結(jié)論中ABD≌△BCF;四邊形BDEF是平行四邊形;S四邊形BDEF;SAEF.其中正確的有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點表示的數(shù)是在點的右側(cè),且到點的距離是18;點在點與點之間,且到點的距離是到點距離的2.

(1)點表示的數(shù)是____________;點表示的數(shù)是_________;

(2)若點P從點出發(fā),沿數(shù)軸以每秒4個單位長度的速度向右勻速運動;同時,點Q從點B出發(fā),沿數(shù)軸以每秒2個單位長度的速度向左勻速運動。設(shè)運動時間為秒,在運動過程中,當(dāng)為何值時,點P與點Q之間的距離為6?

(3)在(2)的條件下,若點P與點C之間的距離表示為PC,點Q與點B之間的距離表示為在運動過程中,是否存在某一時刻使得?若存在,請求出此時點表示的數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點MBA的延長線上,MD切⊙O于點D,過點BBNMD于點C,連接AD并延長,交BN于點N

(1)求證:AB=BN;

(2)若⊙O半徑的長為3,cosB=,求MA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,直線: 與拋物線相交于點A,7.

(1)m,n的值;

(2)過點AABx軸交拋物線于點B,設(shè)拋物線與x軸交于點C、D(C在點D的左側(cè)),求BCD的面積;

(3)Et,0)為x軸上一個動點,過點E作平行于y軸的直線與直線和拋物線分別交于點P、Q.當(dāng)點P在點Q上方時,求線段PQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BA=BC=20cm,AC=30cm,點PA出發(fā),沿AB4cm/s的速度向點B運動;同時點QC點出發(fā),沿CA3cm/s的速度向A點運動.設(shè)運動時間為xs).

1)當(dāng)x為何值時,PQBC

2)當(dāng)APQCQB相似時,AP的長為________.;

3當(dāng)SBCQSABC=13,求SAPQSABQ的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標平面內(nèi),直線y=x+2分別與x軸、y軸交于點A、C.拋物線y=﹣+bx+c經(jīng)過點A與點C,且與x軸的另一個交點為點B.點D在該拋物線上,且位于直線AC的上方.

(1)求上述拋物線的表達式;

(2)聯(lián)結(jié)BC、BD,且BDAC于點E,如果ABE的面積與ABC的面積之比為4:5,求∠DBA的余切值;

(3)過點DDFAC,垂足為點F,聯(lián)結(jié)CD.若CFDAOC相似,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中, ,CDE中, ,CD=DE=5,

連接接BE,取BE中點F,連接AF、DF.

1)如圖1,若三點共線, 中點.

①直接指出的關(guān)系______________;

②直接指出的長度______________;

2)將圖(1)中的CDE點逆時針旋轉(zhuǎn)(如圖2 ),試確定的關(guān)系,并說明理由;

3)在(2)中,若,請直接指出點所經(jīng)歷的路徑長.

1 2

查看答案和解析>>

同步練習(xí)冊答案