【題目】如圖,已知點(diǎn)E,F(xiàn)分別是ABCD的邊BC,AD上的中點(diǎn),且∠BAC=90°,若∠B=30°,BC=10,則四邊形AECF的面積為__

【答案】

【解析】

由條件可先證得四邊形AECF為菱形,連接EFAC于點(diǎn)O,解直角三角形求出AC、AB,由三角形中位線定理求出OE,得出EF,菱形AECF的面積=ACEF,即可得出結(jié)果.

解:∵四邊形ABCD是平行四邊形,

∴AD=BC,

Rt△ABC中,∠BAC=90°,點(diǎn)EBC邊的中點(diǎn),

∴AE=BC=CE,

同理,AF=AD=CF,

∴AE=CE=AF=CF,

∴四邊形AECF是菱形,

連接EFAC于點(diǎn)O,如圖所示:

Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,

∴AC=BC=5,AB=AC=5

∵四邊形AECF是菱形,

∴AC⊥EF,OA=OC,

∴OE是△ABC的中位線,

∴OE=AB=

∴EF=5,

∴S菱形AECF=ACEF=×5×5=,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,取格點(diǎn)A、B、C并連接AB,BC.取格點(diǎn)DE并連接,交AB于點(diǎn)F

(Ⅰ)BF的長等于_____

(Ⅱ)若點(diǎn)G在線段BC上,且滿足AF+CG=FG,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,確定點(diǎn)G的位置,并簡要說明點(diǎn)G的位置是如何找到的________________________________________(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前微信”、“支付寶”、“共享單車網(wǎng)購給我們的生活帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對你最認(rèn)可的四大新生事物進(jìn)行調(diào)查,隨機(jī)調(diào)查了m人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

(1)根據(jù)圖中信息求出m=   ,n=   

(2)請你幫助他們將這兩個統(tǒng)計(jì)圖補(bǔ)全;

(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學(xué)生中,大約有多少人最認(rèn)可微信這一新生事物?

(4)已知A、B兩位同學(xué)都最認(rèn)可微信”,C同學(xué)最認(rèn)可支付寶”D同學(xué)最認(rèn)可網(wǎng)購從這四名同學(xué)中抽取兩名同學(xué),請你通過樹狀圖或表格,求出這兩位同學(xué)最認(rèn)可的新生事物不一樣的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形四邊形ABCD中,,,對角線AC、BD交于點(diǎn)O,點(diǎn)P為直線BD上的動點(diǎn)不與點(diǎn)B重合,連接AP,將線段AP繞點(diǎn)P逆時針旋轉(zhuǎn)得到線段PE,連接CE、BE.

問題發(fā)現(xiàn)

如圖1,當(dāng)點(diǎn)E在直線BD上時,線段BP與CE的數(shù)量關(guān)系為______;______

拓展探究

如圖2,當(dāng)點(diǎn)P在線段BO延長線上時,的結(jié)論是否成立?若成立,請加以證明;若不成立,請說明理由;

問題解決

當(dāng)時,請直接寫出線段AP的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的四個頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時.

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線Ly=mx+n(m<0,n>0)x,y軸分別相交于A,B兩點(diǎn),將△AOB繞點(diǎn)O逆時針旋轉(zhuǎn)90°,得到△COD,過點(diǎn)A,B,D的拋物線P叫做L的關(guān)聯(lián)拋物線,而L叫做P的關(guān)聯(lián)直線.

(1)Ly=-x+2,則P表示的函數(shù)解析式為______;若P,則表示的函數(shù)解析式為_______

(2)如圖②,若Ly=-3x+3,P的對稱軸與CD相交于點(diǎn)E,點(diǎn)FL上,點(diǎn)QP的對稱軸上.當(dāng)以點(diǎn)C,E,Q,F為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形時,求點(diǎn)Q的坐標(biāo);

(3)如圖③,若Ly=mx+1,GAB中點(diǎn),HCD中點(diǎn),連接GH,MGH中點(diǎn),連接OM.若OM=,求出L,P表示的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=30,AD=48BC=14,CD=40,∠ABD+BDC=90°,ABCD的面積為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2cm,∠DAB60°.點(diǎn)PA點(diǎn)出發(fā),以cm/s的速度,沿ACC作勻速運(yùn)動;與此同時,點(diǎn)Q也從A點(diǎn)出發(fā),以1cm/s的速度,沿射線AB作勻速運(yùn)動.當(dāng)P運(yùn)動到C點(diǎn)時,P、Q都停止運(yùn)動,設(shè)點(diǎn)P運(yùn)動的時間為ts).

1)對角線AC的長是 cm;

2)當(dāng)P異于A、C時,請說明PQBC;

3)以P為圓心、PQ長為半徑作圓,請問:在整個運(yùn)動過程中,t為怎樣的值時,⊙P與邊BC分別有1個公共點(diǎn)和2個公共點(diǎn)?

查看答案和解析>>

同步練習(xí)冊答案