已知一個菱形的兩條對角線的和為24cm,設其中一條對角線的長為xcm,菱形的面積為Scm2,求S與x的函數(shù)關系式.
考點:菱形的性質
專題:
分析:利用菱形對角線乘積的一半等于菱形面積進而求出答案.
解答:解:∵一個菱形的兩條對角線的和為24cm,設其中一條對角線的長為xcm,
∴另一條對角線的長為:(24-x)cm,
∵菱形的面積為Scm2,
∴S=
1
2
x(24-x)=-
1
2
x2+12x.
點評:此題主要考查了菱形的性質,正確把握菱形面積公式是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=BC=8cm,點P從點A出發(fā),沿AB方向以每秒
2
cm的速度向終點B運動;同時動點Q從點B出發(fā)沿BC方向以每秒1cm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′.設Q點運動的時間t秒,則t的值為
 
時,四邊形QPCP′為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,O是直線AB上的一點,OD平分∠AOC
(!)若∠AOC=60°,請求出∠AOD和∠BOC的度數(shù);
(2)若EO⊥AB于O,且∠AOD=
1
3
∠AOE,請求出∠AOD和∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

x滿足什么條件時下列分式有意義:
x-2
2x+1
-
1
x-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,一拋物線過點B、C和D,點D與點B關于直線y=x對稱.
(1)求點D的坐標.
(2)求直線BD和拋物線的解析式.
(3)若直線BD與拋物線的對稱軸交于點M,點N在坐標軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知實數(shù)a滿足a2+2a-8=0,求a(a+2)2-a(a-3)(a-1)+3(5a-2)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果關于x的不等式組
x-m-3>0
x-3m+1<0
無解,則m的取值范圍
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

張叔叔在棱長為40.25cm的兩個正方體木箱中裝滿了大米,他將這兩箱大米都倒入了另一個新的正方體木箱中,結果正好裝滿,則這個新的正方體木箱的棱長大約是多少(結果精確到0.01cm)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我國某地區(qū)的面積約為6.40×106平方千米,它精確到
 
位,它有
 
有效數(shù)字;-
1
4
π2xy2z3的系數(shù)是
 
,次數(shù)是
 

查看答案和解析>>

同步練習冊答案