【題目】今年6月份,某果農(nóng)收獲荔枝30噸,香蕉13噸,現(xiàn)計劃租用甲、乙兩種貨車共10輛將這批水果全部運(yùn)往港口,已知一輛甲種貨車可裝荔枝和香蕉共5噸,且一輛甲種貨車可裝的荔枝重量(單位:噸)是其可裝的香蕉重量的4倍,一輛乙種貨車可裝荔枝香蕉各2噸;

1)一輛甲種貨車可裝載荔枝、香蕉各多少噸?

2)該果農(nóng)安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來;

3)若甲種貨車每輛要付運(yùn)輸費(fèi)2000元,乙種貨車每輛要付運(yùn)輸費(fèi)1300元,則該果農(nóng)應(yīng)選擇哪種方案?使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?

【答案】1)一輛甲種貨車可裝載荔枝4噸,香蕉1噸;(2)共有三種方案,方案1:安排5輛甲種貨車,5輛乙種貨車;方案2:安排6輛甲種貨車,4輛乙種貨車;方案3:安排7輛甲種貨車,3輛乙種貨車.(3)該果農(nóng)應(yīng)選方案1,使運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是16500元.

【解析】

1)可設(shè)一輛甲種貨車可裝載荔枝x噸,香蕉y噸,根據(jù)“一輛車總共裝5噸”,有,根據(jù)“可裝的荔枝重量是其可裝的香蕉重量的4倍”,有,聯(lián)立解二元一次方程組即可.

2)可以設(shè)安排m輛甲種貨車,安排(10m)輛乙種貨車,必須使兩種車裝載荔枝總量大于等于30噸,則有,裝載香蕉總量大于等于13噸,則有,聯(lián)立解一元一次不等式組,注意只取整數(shù).

3)根據(jù)第(2)題得出的方案逐一計算,取最小費(fèi)用即可.

1)設(shè)一輛甲種貨車可裝載荔枝x噸,香蕉y噸,

依題意,得:,

解得:

答:一輛甲種貨車可裝載荔枝4噸,香蕉1噸.

2)設(shè)安排m輛甲種貨車,則安排(10m)輛乙種貨車,

依題意,得:,

解得:5m7

m為整數(shù),

m5,6,7,

∴共有三種方案,方案1:安排5輛甲種貨車,5輛乙種貨車;方案2:安排6輛甲種貨車,4輛乙種貨車;方案3:安排7輛甲種貨車,3輛乙種貨車.

3)方案1所需費(fèi)用2000×5+1300×516500(元);

方案2所需費(fèi)用2000×6+1300×417200(元);

方案3所需費(fèi)用2000×7+1300×317900(元).

165001720017900

∴該果農(nóng)應(yīng)選方案1,使運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是16500元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MHx軸于點(diǎn)H,MAy軸于點(diǎn)N,sinMOH

1)求此拋物線的函數(shù)表達(dá)式;

2)過H的直線與y軸相交于點(diǎn)P,過OM兩點(diǎn)作直線PH的垂線,垂足分別為EF,若 時,求點(diǎn)P的坐標(biāo);

3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動點(diǎn),直線NQx軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動時,是否存在點(diǎn)Q,使ANG ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售A、B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價和售價如下表所示:

教學(xué)設(shè)備

A

B

進(jìn)價(萬元/套)

3

2.4

售價(萬元/套)

3.3

2.8

該商場計劃購進(jìn)兩種教學(xué)設(shè)備若干套,共需132萬元,全部銷售后可獲毛利潤18萬元.

1)該商場計劃購進(jìn)A、B兩種品牌的教學(xué)設(shè)備各多少套?

2)通過市場調(diào)查,該商場決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進(jìn)數(shù)量,增加B種設(shè)備的購進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍.若用于購進(jìn)這兩種教學(xué)設(shè)備的總資金不超過138萬元,則A種設(shè)備購進(jìn)數(shù)量最多減少多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點(diǎn)C按逆時針方向旋轉(zhuǎn)得到△A'B'C',此時點(diǎn)A'恰好在AB邊上,則點(diǎn)B'與點(diǎn)B之間的距離為(  )

A. 12 B. 6 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=54°∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EFEBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù):

在數(shù)學(xué)中,利用圖形在變化過程中的不變性質(zhì),常?梢哉业浇鉀Q問題的辦消去.著名美籍匈牙利數(shù)學(xué)家波利亞在他所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書中有這樣一個例子:請問如何在一個三角形ABCACBC兩邊上分別取一點(diǎn)XY,使得AX=BY=XY.(如圖)解決這個問題的操作步驟如下:

第一步,在CA上作出一點(diǎn)D,使得CD=CB,連接BD.第二步,在CB上取一點(diǎn)Y',作Y'Z∥CA,交BD于點(diǎn)Z',并在AB上取一點(diǎn)A',使Z'A'=Y'Z'.第三步,過點(diǎn)AAZ∥A'Z',交BD于點(diǎn)Z.第四步,過點(diǎn)ZZY∥AC,交BC于點(diǎn)Y,再過點(diǎn)YYX∥ZA,交AC于點(diǎn)X.

則有AX=BY=XY.

下面是該結(jié)論的部分證明:

證明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,

∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.

同理可得.∴

∵Z'A'=Y'Z',∴ZA=YZ.

在數(shù)學(xué)中,利用圖形在變化過程中的不變性質(zhì),常?梢哉业浇鉀Q問題的辦消去.著名美籍匈牙利數(shù)學(xué)家波利亞在他所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書中有這樣一個例子:請問如何在一個三角形ABCACBC兩邊上分別取一點(diǎn)XY,使得AX=BY=XY.(如圖)解決這個問題的操作步驟如下:

第一步,在CA上作出一點(diǎn)D,使得CD=CB,連接BD.第二步,在CB上取一點(diǎn)Y',作Y'Z∥CA,交BD于點(diǎn)Z',并在AB上取一點(diǎn)A',使Z'A'=Y'Z'.第三步,過點(diǎn)AAZ∥A'Z',交BD于點(diǎn)Z.第四步,過點(diǎn)ZZY∥AC,交BC于點(diǎn)Y,再過點(diǎn)YYX∥ZA,交AC于點(diǎn)X.

則有AX=BY=XY.

下面是該結(jié)論的部分證明:

證明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,

∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.

同理可得.∴

∵Z'A'=Y'Z',∴ZA=YZ.

任務(wù):(1)請根據(jù)上面的操作步驟及部分證明過程,判斷四邊形AXYZ的形狀,并加以證明;

(2)請再仔細(xì)閱讀上面的操作步驟,在(1)的基礎(chǔ)上完成AX=BY=XY的證明過程;

(3)上述解決問題的過程中,通過作平行線把四邊形BA'Z'Y'放大得到四邊形BAZY,從而確定了點(diǎn)Z,Y的位置,這里運(yùn)用了下面一種圖形的變化是   

A.平移 B.旋轉(zhuǎn) C.軸對稱 D.位似

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫州市處于東南沿海,夏季經(jīng)常遭受臺風(fēng)襲擊,一次,溫州氣象局測得臺風(fēng)中心在溫州市的正西方向300千米的處,以每小時千米的速度向東偏南方向移動,距臺風(fēng)中心200千米的范圍是受臺風(fēng)嚴(yán)重影響的區(qū)域,試問:

1)臺風(fēng)中心在移動過程中離溫州市最近距離是多少千米?

2)溫州市是否受臺風(fēng)影響?若不會受到,請說明理由;若會受到,求出溫州市受臺風(fēng)嚴(yán)重影響的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC的中點(diǎn),將△ADE繞點(diǎn)A按順時針方向旋轉(zhuǎn)一個角度α(0°<α<90°)得到△AD'E′,連接BD′、CE′,如圖1.

(1)求證:BD′=CE';

(2)如圖2,當(dāng)α=60°時,設(shè)ABD′E′交于點(diǎn)F,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知非直角三角形ABC中,∠A45°,高BD與高CE所在直線交于點(diǎn)H,則∠BHC的度數(shù)是____

查看答案和解析>>

同步練習(xí)冊答案