數(shù)學課上,李老師出示了如下框中的題目.
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況·探索結(jié)論
當點E為AB的中點時,如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:AE=DB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE=DB(填“>”,“<”或“=”).理由如下:如圖2,過點E作EF∥BC,交AC于點F,(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結(jié)果).
解答:解:(1)故答案為:=. (2)故答案為:=. 證明:在等邊△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC, ∵EF∥BC, ∴∠AEF=∠AFE=60°=∠BAC, ∴AE=AF=EF, ∴AB-AE=AC-AF, 即BE=CF, ∵∠ABC=∠EDB+∠BED=60°, ∠ACB=∠ECB+∠FCE=60°, ∵ED=EC, ∴∠EDB=∠ECB, ∴∠BED=∠FCE, ∴△DBE≌△EFC, ∴DB=EF, ∴AE=BD. (3)答:CD的長是1或3. 考點:全等三角形的判定與性質(zhì);三角形內(nèi)角和定理;等邊三角形的判定與性質(zhì). 專題:計算題;證明題;分類討論. 分析:(1)根據(jù)等邊三角形的性質(zhì)和三角形的內(nèi)角和定理求出∠D=∠DEB=30°,推出DB=BE=AE即可得到答案; (2)作EF∥BC,證出等邊三角形AEF,再證△DBE≌△EFC即可得到答案; (3)分為兩種情況:一是如上圖在AB邊上,在CB的延長線上,求出CD=3,二是在BC上求出CD=1,即可得到答案. 點評:本題主要考查對全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,等邊三角形的性質(zhì)和判定等知識點的理解和掌握,能綜合運用這些性質(zhì)進行推理是解此題的關(guān)鍵. |
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
DF |
FC |
DE |
EP |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com