【題目】下列說法中錯誤的是( )
A. 在△ABC中,∠C=∠A-∠B,則△ABC為直角三角形
B. 在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,則△ABC為直角三角形
C. 在△ABC中,若a=c,b=c,則△ABC為直角三角形
D. 在△ABC中,若a∶b∶c=2∶2∶4,則△ABC為直角三角形
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是∠BAC平分線.
(1)若∠B=38°,∠C=70°,求∠DAE的度數(shù);
(2)若∠B>∠C,試探求∠DAE、∠B、∠C之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+c的部分圖象如圖所示,A(1,0),B(0,3).
(1)求拋物線的解析式;
(2)結合函數(shù)圖象,寫出當y<3時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C1:y=﹣ x2+mx+m+ .
(1)①無論m取何值,拋物線經(jīng)過定點P;
②隨著m的取值變化,頂點M(x,y)隨之變化,y是x的函數(shù),則其函數(shù)C2關系式為;
(2)如圖1,若該拋物線C1與x軸僅有一個公共點,請在圖1中畫出頂點M滿足的函數(shù)C2的大致圖象,平行于y軸的直線l分別交C1、C2于點A、B,若△PAB為等腰直角三角形,判斷直線l滿足的條件,并說明理由;
(3)如圖2,拋物線C1的頂點M在第二象限,交x軸于另一點C,拋物線上點M與點P之間一點D的橫坐標為﹣2,連接PD、CD、CM、DM,若S△PCD=S△MCD , 求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列結論中正確的是( )
A. 三角形的一個外角大于這個三角形的任何一個內(nèi)角
B. 三角形按邊分類可以分為:不等邊三角形、等腰三角形、等邊三角形
C. 三角形的三個內(nèi)角中,最多有一個鈍角
D. 若三條線段、、,滿足,則此三條線段一定能組成三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(點A在點B的左邊)AB=4,與y軸交于點C,OC=OA,點D為拋物線的頂點.
(1)求拋物線的解析式;
(2)點M(m,0)為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM,如圖1,點P在點Q左邊,當矩形PQNM的周長最大時,求m的值,并求出此時的△AEM的面積;
(3)已知H(0,﹣1),點G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點G的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是 的中點,CE⊥AB于E,BD交CE于點F.
(1)求證:CF=BF;
(2)若CD=6,AC=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。
(1)籃球和排球的單價各是多少元?
(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為6的正三角形紙片按如下順序進行兩次折疊,展開后,得折痕(如圖①),為其交點.
(1)探求與的數(shù)量關系,并說明理由;
(2)如圖②,若分別為上的動點.
①當的長度取得最小值時,求的長度;
②如圖③,若點在線段上,,則的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com