【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=x+2與坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B在y軸上,C點(diǎn)的坐標(biāo)為(1,0),拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B、C.
(1)求該拋物線(xiàn)的解析式;
(2)根據(jù)圖象直接寫(xiě)出不等式ax2+(b﹣1)x+c>2的解集;
(3)點(diǎn)P是拋物線(xiàn)上一動(dòng)點(diǎn),且在直線(xiàn)AB上方,過(guò)點(diǎn)P作AB的垂線(xiàn)段,垂足為Q點(diǎn).當(dāng)PQ=時(shí),求P點(diǎn)坐標(biāo).
【答案】(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P點(diǎn)坐標(biāo)為(﹣1,2).
【解析】分析:(1)、根據(jù)題意得出點(diǎn)A和點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求出二次函數(shù)的解析式;(2)、根據(jù)函數(shù)圖像得出不等式的解集;(3)、作PE⊥x軸于點(diǎn)E,交AB于點(diǎn)D,根據(jù)題意得出∠PDQ=∠ADE=45°,PD==1,然后設(shè)點(diǎn)P(x,﹣x2﹣x+2),則點(diǎn)D(x,x+2),根據(jù)PD的長(zhǎng)度得出x的值,從而得出點(diǎn)P的坐標(biāo).
詳解:(1)當(dāng)y=0時(shí),x+2=0,解得x=﹣2,當(dāng)x=0時(shí),y=0+2=2,
則點(diǎn)A(﹣2,0),B(0,2),
把A(﹣2,0),C(1,0),B(0,2),分別代入y=ax2+bx+c得,解得.
∴該拋物線(xiàn)的解析式為y=﹣x2﹣x+2;
(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,
則不等式ax2+(b﹣1)x+c>2的解集為﹣2<x<0;
(3)如圖,作PE⊥x軸于點(diǎn)E,交AB于點(diǎn)D,
在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,
在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,
設(shè)點(diǎn)P(x,﹣x2﹣x+2),則點(diǎn)D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,
即﹣x2﹣2x=1,解得x=﹣1,則﹣x2﹣x+2=2,∴P點(diǎn)坐標(biāo)為(﹣1,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,某校決定開(kāi)展以下四項(xiàng)活動(dòng):A經(jīng)典古詩(shī)文朗誦;B書(shū)畫(huà)作品鑒賞;C民族樂(lè)器表演;D圍棋賽學(xué)校要求學(xué)生全員參與,且每人限報(bào)一項(xiàng)九年級(jí)班班長(zhǎng)根據(jù)本班報(bào)名結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:
直接填空:九年級(jí)班的學(xué)生人數(shù)是______,在扇形統(tǒng)計(jì)圖中,B項(xiàng)目所對(duì)應(yīng)的扇形的圓心角度數(shù)是______;
將條形統(tǒng)計(jì)圖補(bǔ)充完整;
用列表或畫(huà)樹(shù)狀圖的方法,求該班學(xué)生小聰和小明參加相同項(xiàng)目活動(dòng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形紙片沿對(duì)角線(xiàn)翻折,使點(diǎn)的對(duì)應(yīng)點(diǎn)(落在矩形所在平面內(nèi),與相交于點(diǎn),接.
(1)在圖1中,
①和的位置關(guān)系為__________________;
②將剪下后展開(kāi),得到的圖形是_________________;
(2)若圖1中的矩形變?yōu)槠叫兴倪呅螘r(shí)(),如圖2所示,結(jié)論①、②是否成立,若成立,請(qǐng)對(duì)結(jié)論②加以證明,若不成立,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,梯形ABCD中,AD∥BC,E是BC的中點(diǎn),∠BEA=∠DEA ,聯(lián)結(jié)AE、BD相交于點(diǎn)F,BD⊥CD.
(1)求證:AE=CD;
(2)求證:四邊形ABED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在四邊形ABCD中,點(diǎn)G在邊BC的延長(zhǎng)線(xiàn)上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于點(diǎn)O.
(1)求證:OE=OF;
(2)若點(diǎn)O為CD的中點(diǎn),求證:四邊形DECF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線(xiàn)段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過(guò)點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過(guò)點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.
(1)直接寫(xiě)出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):_____;
(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】年月日是第個(gè)世界讀書(shū)日,為迎接第個(gè)世界讀書(shū)日的到來(lái),某校舉辦讀書(shū)分享大賽活動(dòng):大賽以“推薦分享”為主題,參賽者選擇一本自己最喜歡的書(shū),然后給該書(shū)寫(xiě)一段推薦語(yǔ)、一篇讀書(shū)心得、舉辦一場(chǎng)讀書(shū)講座.大賽組委會(huì)對(duì)參賽者提交的推薦語(yǔ)、讀書(shū)心得、舉辦的讀書(shū)講座進(jìn)行打分(各項(xiàng)成績(jī)均按百分制),綜合成績(jī)排名第一的選手將獲得大賽一等獎(jiǎng).現(xiàn)有甲、乙兩位同學(xué)的各項(xiàng)成績(jī)?nèi)缦卤硭荆?/span>
參賽者 | 推薦語(yǔ) | 讀書(shū)心得 | 讀書(shū)講座 |
甲 | |||
乙 |
(1)若將三項(xiàng)成績(jī)的平均分作為參賽選手的綜合成績(jī),則甲、乙二人誰(shuí)最有可能獲得大賽一等獎(jiǎng)?請(qǐng)通過(guò)計(jì)算說(shuō)明理由.
(2)若“推薦語(yǔ)”“讀書(shū)心得”“讀書(shū)講座”的成績(jī)按確定綜合成績(jī),則甲、乙二人誰(shuí)最有可能獲得大賽一等獎(jiǎng)?請(qǐng)通過(guò)計(jì)算說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)都在直線(xiàn)上,,分別為中點(diǎn),直線(xiàn)上所有線(xiàn)段的長(zhǎng)度之和為19,則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)D在y軸的正半軸上,點(diǎn)B、點(diǎn)C在第一象限,sin∠OAD=,線(xiàn)段AD、AB的長(zhǎng)分別是方程x2﹣11x+24=0的兩根(AD>AB).
(1)求點(diǎn)B的坐標(biāo);
(2)求直線(xiàn)AB的解析式;
(3)在直線(xiàn)AB上是否存在點(diǎn)M,使以點(diǎn)C、點(diǎn)B、點(diǎn)M為頂點(diǎn)的三角形與△OAD相似?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com