【題目】如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點A和點B(點A在原點的左側(cè),點B在原點的右側(cè)),與y軸交于點C,OB=OC=3.

(1)求該拋物線的函數(shù)解析式.

(2)如圖1,連接BC,點D是直線BC上方拋物線上的點,連接OD,CD.ODBC于點F,當(dāng)SCOF:SCDF=3:2時,求點D的坐標(biāo).

(3)如圖2,點E的坐標(biāo)為(0,),點P是拋物線上的點,連接EB,PB,PE形成的△PBE中,是否存在點P,使∠PBE或∠PEB等于2∠OBE?若存在,請直接寫出符合條件的點P的坐標(biāo);若不存在,請說明理由.

【答案】(1)y=﹣x2+2x+3;(2)D的坐標(biāo)為(1,4)或(2,3);(3)P坐標(biāo)為:()或(,).

【解析】

(1)OB=OC=3,則:B(3,0),C(0,-3),把B、C坐標(biāo)代入拋物線方程,解得拋物線方程為:y=-x2+2x+3;

(2)SCOF:SCDF=3:2,則SCOF=SCOD,即:xD=xF,即可求解;

(3)分∠PBE或∠PEB等于2OBE兩種情況分別求解即可.

(1)OB=OC=3,則:B(3,0),C(0,﹣3),

B、C坐標(biāo)代入拋物線方程,

解得拋物線方程為:y=﹣x2+2x+3;

(2)SCOF:SCDF=3:2,

SCOFSCOD,即:xDxF,

設(shè):F點橫坐標(biāo)為3t,則D點橫坐標(biāo)為5t,

F在直線BC上,

BC所在的直線方程為:y=﹣x+3,則F(3t,3﹣3t),

則:直線OF所在的直線方程為:y=x=x,

則點D(5t,5﹣5t),

D點坐標(biāo)代入①,解得:t=

則點D的坐標(biāo)為(1,4)或(2,3);

(3)①如圖所示,當(dāng)∠PEB=2OBE=2α時,

過點E作∠PEB的平分線交x軸于G點,PEx軸于H點,

則:∠PEQ=QEB=ABE=α,則∠HGE=2α,

設(shè):GB=m,則:OG=3﹣m,GE=m,

RtOGE中,由勾股定理得:EG2=OG2+OE2

即:m2=(3﹣m)2+(2,解得:m=,

則:GE=,OG=,BE=,

∵∠PEQ=ABE=α,EHG=EHG,∴△HGE∽△HEB,

,設(shè):GH=x,HE=4x,

RtOHE中,OH=OG﹣HG=x,OE=,EH=4x,

由勾股定理解得:x=,則:OH=,H(,0),

E、H兩點坐標(biāo)代入一次函數(shù)表達式,

解得EH所在直線的表達式為:y=x﹣,

將上式與①聯(lián)立并解得:x=,

則點P(,);

②當(dāng)∠PBE=2OBE時,則∠PBO=EBO,

BE所在直線的k值為,則BE所在直線的k值為﹣,

則:PB所在的直線方程為:y=﹣x+3,

將上式與①聯(lián)立,解得:x=,(x=0已舍去),

則點P(),

故:點P坐標(biāo)為:(,或().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+bk0)的圖象與反比例函數(shù)的圖象相交于A-1,m),Bn,-1)兩點,直線ABy軸交于C點,連接OB

1)求一次函數(shù)的表達式;

2)在x軸上找一點P,連接BP,使BOP的面積等于BOC的面積的2倍,求滿足條件的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC 中,AB 為半圓 O 的直徑,AC、BC 分別交半圓 O 于點 E、D,且 BDDE

(1)求證:點 D BC 的中點.

(2)若點 E AC 的中點,判斷ABC 的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)

為何值時,直線與y軸交點在x軸上方?

為何值時,直線不經(jīng)過第一象限?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線C1:y=ax2+bx+1的頂點坐標(biāo)為D(1,0)且經(jīng)過點(0,1),將拋物線C1向右平移1個單位,向下平移1個單位得到拋物線C2,直線y=x+c,經(jīng)過點Dy軸于點A,交拋物線C2于點B,拋物線C2的頂點為P.

(1)求拋物線C1的解析式;

(2)如圖2,連結(jié)AP,過點BBC⊥APAP的延長線于C,設(shè)點Q為拋物線上點P至點B之間的一動點,連結(jié)BQ并延長交AC于點F,

當(dāng)點Q運動到什么位置時,SPBD×SBCF=8?

連接PQ并延長交BC于點E,試證明:FC(AC+EC)為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為5的正方形邊與軸的夾角為,則的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+cx軸交A(﹣1,0),B兩點,與y軸交于點C(0,3),拋物線的頂點為點E.

(1)求拋物線的解析式;

(2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一個動點,當(dāng)點P運動到點E時,求△PCD的面積;

(3)N在拋物線對稱軸上,點Mx軸上,是否存在這樣的點M與點N,使以M,N,C,B為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標(biāo)(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于 A(﹣10),B4,0),C

0,﹣4)三點,點 P 是直線 BC 下方拋物線上一動點.

1 求這個二次函數(shù)的解析式;

2 是否存在點 P,使POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點坐標(biāo);若不存在,請說明理由;

3 在拋物線上是否存在點 D(與點 A 不重合)使得 SDBCSABC,若存在,求出點 D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三條線段能組成鈍角三角形的是( )

A. 3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,7

查看答案和解析>>

同步練習(xí)冊答案