如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交x軸于點(diǎn)M,交y軸于點(diǎn)N,再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧在第二象限交于點(diǎn)P.若點(diǎn)P的坐標(biāo)為(2x,y+1),則y關(guān)于x的函數(shù)關(guān)系為( 。
A. y=x B.y=﹣2x﹣1 C.y=2x﹣1 D. y=1﹣2x
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,將△ABC沿射線AB平移到△DEF的位置,AC=4,EF=6,則以下結(jié)論一定的是( 。
A. DB=4 B.BC=6 C.AB=10 D. AE=12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖所示的直面直角坐標(biāo)系中,△OAB的三個(gè)頂點(diǎn)坐標(biāo)分別為O(0,0),A(1,﹣3)B(3,﹣2).
(1)將△OAB繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°畫出旋轉(zhuǎn)后的△OA′B′;
(2)求出點(diǎn)B到點(diǎn)B′所走過(guò)的路徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,∠C=90°,∠CAB=60°,按以下步驟作圖:
①分別以A,B為圓心,以大于AB的長(zhǎng)為半徑做弧,兩弧相交于點(diǎn)P和Q.
②作直線PQ交AB于點(diǎn)D,交BC于點(diǎn)E,連接AE.若CE=4,則AE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
用直尺和圓規(guī)作一個(gè)角等于已知角,如圖,能得出的依據(jù)是( 。
A. 邊邊邊 B邊角邊 C角邊角 D. 角角邊
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,點(diǎn)A是直線l外一點(diǎn),在l上取點(diǎn)B、C.按下列步驟作圖:分別以A、C為圓心,BC、AB長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)D.則四點(diǎn)A、B、C、D可組成的圖形是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖①,將一張直角三角形紙片△ABC折疊,使點(diǎn)A與點(diǎn)C重合,這時(shí)DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對(duì)稱軸EF折疊,這時(shí)得到了兩個(gè)完全重合的矩形(其中一個(gè)是原直角三角形的內(nèi)接矩形,另一個(gè)是拼合成的無(wú)縫隙、無(wú)重疊的矩形),我們稱這樣兩個(gè)矩形為“疊加矩形”.
(1)如圖②,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請(qǐng)?jiān)趫D②中畫出折痕;
(2)如圖③,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個(gè)斜三角形ABC,使其頂點(diǎn)A在格點(diǎn)上,且△ABC折成的“疊加矩形”為正方形;
(3)若一個(gè)三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(將一張正方形紙片按如圖1,圖2所示的方向?qū)φ,然后沿圖3中的虛線剪裁得到圖4,將圖4的紙片展開鋪平,再得到的圖案是( 。
A. B C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com