【題目】如圖(a),將兩塊直角三角尺的直角頂點C疊放在一起.

1)若∠DCE35°,∠ACB   ;若∠ACB140°,則∠DCE   ;并猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說明理由;

2)如圖(b),若是兩個同樣的三角尺60°銳角的頂點A重合在一起,則∠DAB與∠CAE的大小有何關(guān)系,請說明理由;

3)已知∠AOBα,∠CODβ(都是銳角),如圖(c),若把它們的頂點O重合在一起,請直接寫出∠AOD與∠BOC的大小相等的關(guān)系(用含有αβ的式子表示).

【答案】1145°,40°,∠ACB+∠DCE180°,理由見解析;(2)∠DAB+∠CAE120°,理由見解析;(3)∠AOD+∠BOCαβ.

【解析】

1)若∠DCE35°,根據(jù)90°計算∠ACE的度數(shù),再計算∠ACB的度數(shù);若∠ACB140°,同理,反之計算可得結(jié)果;先計算∠ACB90°+∠BCD,再加上∠DCE可得∠ACB與∠DCE的關(guān)系;
2)先計算∠DAB60°+∠CAB,再加上∠CAE可得結(jié)果;
3)先計算∠AODβ+∠COA,再加上∠BOC可得結(jié)果.

解:(1)若∠DCE35°,
∵∠ACD90°,∠DCE35°,
∴∠ACE90°35°55°,
∵∠BCE90°,
∴∠ACB=∠ACE+∠BCE55°90°145°;
若∠ACB140°
∵∠BCE90°,
∴∠ACE140°90°50°
∵∠ACD90°,
∴∠DCE90°50°40°,
故答案為:145°;40°

ACB+∠DCE180°,
理由:∵∠ACB=∠ACD+∠BCD90°+∠BCD,
∴∠ACB+∠DCE90°+∠BCD+∠DCE90°+∠BCE180°
2)∠DAB+∠CAE120°,
理由:∵∠DAB=∠DAC+∠CAB60°+∠CAB,
∴∠DAB+∠CAE60°+∠CAB+∠CAE60°+∠EAB120°;
3)∠AOD+∠BOCαβ,

理由:∵∠AOD=∠DOC+∠COAβ+∠COA,
∴∠AOD+∠BOCβ+∠COA+∠BOCβ+∠AOBαβ

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,觀察函數(shù)y=|x|的圖象,寫出它的兩條的性質(zhì);

2)在圖1中,畫出函數(shù)y=|x-3|的圖象;

根據(jù)圖象判斷:函數(shù)y=|x-3|的圖象可以由y=|x|的圖象向 平移 個單位得到;

3)①函數(shù)y=|2x+3|的圖象可以由y=|2x|的圖象向 平移 單位得到;

②根據(jù)從特殊到一般的研究方法,函數(shù)y=|kx+3|k為常數(shù),k≠0)的圖象可以由函數(shù)y=|kx|k為常數(shù),k≠0)的圖象經(jīng)過怎樣的平移得到.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒,底面為矩形EFGH,如圖2.設(shè)小正方形的邊長為x厘米.

(1)當矩形紙板ABCD的一邊長為90厘米時,求紙盒的側(cè)面積的最大值;

(2)當EHEF=7:2,且側(cè)面積與底面積之比為9:7時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方便交通,綠色出行,人們常選擇以共享單車作為代步工具、圖(1)所示的是一輛自行車的實物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔ACCD的長分別為45cm60cm,且它們互相垂直,座桿CE的長為20cm.點A、CE在同一條直線上,且∠CAB=75°

(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732

圖(1 圖(2

1)求車架檔AD的長;

2)求車座點E到車架檔AB的距離(結(jié)果精確到1cm).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習反比例函數(shù)后,為研究新函數(shù),先將函數(shù)變形為,畫圖發(fā)現(xiàn)函數(shù)的圖象可以由函數(shù)的圖象向上平移1個單位得到.

1)根據(jù)小明的發(fā)現(xiàn),請你寫出函數(shù)的圖象可以由反比例函數(shù)的圖象經(jīng)過怎樣的平移得到;

2)在平面直角坐標系中,已知反比例函數(shù)(x0)的圖象如圖所示,請在此坐標系中畫出函數(shù)(x0)的圖象;

3)若直線y=xb與函數(shù)(x0)的圖象沒有交點,b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將連續(xù)的奇數(shù)13,57,……排成如下表:如圖所示,圖中的T字框框住了四個數(shù)字,若將T字框上下左右移動,按同樣的方式可框住另外的四個數(shù).

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

1)設(shè)T字框內(nèi)處于中間且靠上方的數(shù)是整個數(shù)表當中從小到大排列的第n個數(shù),請你用含n的代數(shù)式表示T字框中的四個數(shù)的和;

2)若將T字框上下左右移動,框住的四個數(shù)的和能等于2020嗎?如能,寫出這四個數(shù),如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某市民健身廣場的平面示意圖,它是由6個正方形拼成的長方形,已知中間最小的正方形的邊長是1米;

1)若設(shè)圖中最大正方形的邊長是米,請用含的代數(shù)式分別表示出正方形的邊長

2)觀察圖形的特點可知,長方形相對的兩邊是相等的(即, )請根據(jù)以上結(jié)論,求出的值

3)現(xiàn)沿著長方形廣場的四條邊鋪設(shè)下水管道,由甲、乙工程隊單獨鋪設(shè)分別需要10天、15天完成,如果兩隊從同一位置開始,沿相反的方向同時施工2天后,因甲隊另有任務,余下的工程由乙隊單獨施工,還要多少天完成?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1.在△ABC,ACB=90°,AC=BC=B為圓心、1為半徑作圓,設(shè)點P為⊙B上一點,線段CP繞著點C順時針旋轉(zhuǎn)90°,得到線段CD,連接DA、PD、PB

1求證AD=BP;

2DP與⊙B相切,則∠CPB的度數(shù)為      ;

3如圖2,BP、D三點在同一條直線上時BD的長;

4BD的最小值為      ;BD的最大值為      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】單詞的記憶效率是指復習一定量的單詞,一周后能正確默寫出的單詞個數(shù)與復習的單詞個數(shù)的比值.如圖描述了某次單詞復習中小華,小紅小剛和小強四位同學的單詞記憶效率y與復習的單詞個數(shù)x的情況,則這四位同學在這次單詞復習中正確默寫出的單詞個數(shù)最多的是(  )

A. 小華B. 小紅C. 小剛D. 小強

查看答案和解析>>

同步練習冊答案