【題目】5G網(wǎng)絡,是最新一代蜂窩移動通信技術(shù),其數(shù)據(jù)傳輸速率遠高于以前的蜂窩網(wǎng)絡,最高可達10Gbit/s,比4G快100倍.5G手機也成為生活、工作不可缺少的移動設(shè)備,某電商公司銷售兩種5G手機,已知售出5部A型手機,3部B型手機的銷售額為51000元;售出3部A型手機,2部B型手機的銷售額為31500元.
(1)求A型手機和B型手機的售價分別是多少元;
(2)該電商公司在3月實行“滿減促銷”活動,活動方案為:單部手機滿3000元減500元,滿5000元減1500元(每部手機只能參加最高滿減活動),結(jié)果3月A型手機的銷量是B型手機的,4月該電商公司加大促銷活動力度,每部A型手機按照3月滿減后的售價再降a%,銷量比3月增加2a%;每部B型手機按照滿減后的售價再降a%,銷量比3月銷量增加a%,結(jié)果4月的銷售總額比3月的銷售總額多a%,求a的值.
【答案】(1)A型手機和B型手機的售價分別是7500元和4500元;(2)a的值為30.
【解析】
(1)設(shè)每部A型號手機的售價為x元,每部B型號手機的售價為y元.根據(jù)題意列方程組即可得到結(jié)論;
(2)設(shè)3月B型手機的銷量是m部,則A型手機的銷量是m部,根據(jù)題意列方程即可得到結(jié)論.
(1)設(shè)每部A型號手機的售價為x元,每部B型號手機的售價為y元.
由題意,得,
解得:,
答:A型手機和B型手機的售價分別是7500元和4500元;
(2)設(shè)3月B型手機的銷量是m部,則A型手機的銷量是m部,
根據(jù)題意得,[(7500﹣1500)×(1﹣a%)][m(1+2a%)]+[(4500﹣500)×(1﹣a%)][m(1+a%)]=[m(7500﹣1500)+m(4500﹣500)](1+a%),
解得:a=30或a=0(不合題意舍去),
答:a的值為30.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標軸的正半軸上,BC∥x軸,OA=OC=4,以直線x=1為對稱軸的拋物線過A,B,C三點.
(1)求該拋物線的函數(shù)解析式;
(2)已知直線的解析式為y=x+m,它與x軸交于點G,在梯形ABCO的一邊上取點P.
①當m=0時,如圖1,點P是拋物線對稱軸與BC的交點,過點P作PH⊥直線于點H,連結(jié)OP,試求△OPH的面積;
②當m=﹣3時,過點P分別作x軸、直線的垂線,垂足為點E,F(xiàn).是否在線段BC存在這樣的點P,使以P,E,F(xiàn)為頂點的三角形是等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與拋物線相交于,兩點.
(1)求拋物線的解析式.
(2)在直線下方的拋物線上求點,求的面積等于20.
(3)若在拋物線上,作軸于點,若和相似,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+c經(jīng)過點A(4,3),頂點為B,對稱軸是直線x=2.
(1)求拋物線的函數(shù)表達式和頂點B的坐標;
(2)如圖1,拋物線與y軸交于點C,連接AC,過A作AD⊥x軸于點D,E是線段AC上的動點(點E不與A,C兩點重合);
(i)若直線BE將四邊形ACOD分成面積比為1:3的兩部分,求點E的坐標;
(ii)如圖2,連接DE,作矩形DEFG,在點E的運動過程中,是否存在點G落在y軸上的同時點F恰好落在拋物線上?若存在,求出此時AE的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年年初,受新冠肺炎疫情的影響,人們對病毒的防范意識加強,市面上的洗手液也備受歡迎,小王計劃購進A型、B型、C型三種洗手液共50箱,其中B型洗手液數(shù)量不超過A型洗手液數(shù)量,且B型洗手液數(shù)量不少于C型洗手液數(shù)量的一半.已知A型洗手液每箱60元,B型洗手液每箱80元,C型洗手液每箱100元.在價格不變的條件下,小王實際購進A型洗手液是計劃的倍,C型洗手液購進了12箱,結(jié)果小王實際購進三種洗手液共35箱,且比原計劃少支付1240元,則小王實際購進B型洗手液_____箱.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中∠C=90°,AB=10,AC=8.
(1)作AB的垂直平分線DE,交AB于點D,交AC于點E.(要求尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長AB=8,E為平面內(nèi)一動點,且AE=4,F為CD上一點,CF=2,連接EF,ED,則2EF+ED的最小值為( 。
A.12B.12C.12D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ACB中,∠C=90°,AC=6,BC=8,半徑為1的⊙O與AC,BC相切,當⊙O沿邊CB平移至與AB相切時,則⊙O平移的距離為( 。
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價多少元?(列方程解答)
(2)該車行計劃今年新進一批A型車和B型車共60輛,A型車的進貨價為每輛1100元,銷售價與(1)相同;B型車的進貨價為每輛1400元,銷售價為每輛2000元,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應如何進貨才能使這批車獲利最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com