【題目】給出下列說法:①射線是軸對(duì)稱圖形;②角的平分線是角的對(duì)稱軸;③軸對(duì)稱圖形的對(duì)稱點(diǎn)一定在對(duì)稱軸的兩側(cè);④平行四邊形是軸對(duì)稱圖形;⑤平面上兩個(gè)全等的圖形一定關(guān)于某條直線對(duì)稱,其中正確的說法有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
【答案】D
【解析】
根據(jù)軸對(duì)稱的定義以及性質(zhì)對(duì)各小題分析判斷即可得解.
解:①射線是軸對(duì)稱圖形,對(duì)稱軸是射線本身所在的直線,故本選項(xiàng)正確;
②應(yīng)為角的平分線所在的直線是角的對(duì)稱軸,故本選項(xiàng)錯(cuò)誤;
③應(yīng)為兩個(gè)成軸對(duì)稱的圖形的對(duì)應(yīng)點(diǎn)一定在對(duì)稱軸的兩側(cè)或在對(duì)稱軸上,故本選項(xiàng)錯(cuò)誤;
④平行四邊形是中心對(duì)稱圖形,不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;
⑤平面上兩個(gè)全等的圖形不一定能關(guān)于某條直線對(duì)稱,故本選項(xiàng)錯(cuò)誤.
正確的說法有1個(gè).
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,是一條射線,,一只螞蟻由以速度向爬行,同時(shí)另一只螞蟻由點(diǎn)以的速度沿方向爬行,幾秒鐘后,兩只螞蟻與點(diǎn)組成的三角形面積為?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn),若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于.如果表示數(shù)a和的兩點(diǎn)之間的距離是5,那么__________;
(2)若數(shù)軸上表示數(shù)a的點(diǎn)位于與6之間,求的值;
(3)當(dāng)a取何值時(shí),的值最小,最小值是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC中,∠C=90°.
(1)若AC=4,BC=3,AE=,DE⊥AC.且DE=DB,求AD的長;
(2)請你用沒有刻度的直尺和圓規(guī),在線段AB上找一點(diǎn)F,使得點(diǎn)F到邊AC的距離等于FB(注:不寫作法,保留作圖痕跡,對(duì)圖中涉及到的點(diǎn)的用字母進(jìn)行標(biāo)注)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(m,n+1),B(m+2,n).
(1)當(dāng)m=1,n=2時(shí).如圖1,連接AB、AO、BO.直接寫出△ABO的面積為 .
(2)如圖2,若點(diǎn)A在第二象限、點(diǎn)B在第一象限,連接AB、AO、BO,AB交y軸于H,△ABO的面積為2.求點(diǎn)H的坐標(biāo).
(3)若點(diǎn)A、B在第一象限,在y 軸正半軸上存在點(diǎn)C,使得∠CAB=900,且CA=AB,求m的值,及OC的長(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰中,,點(diǎn)為邊上一點(diǎn)(不與點(diǎn)、點(diǎn)重合),,垂足為,交于點(diǎn).
(1)請猜想與之間的數(shù)量關(guān)系,并證明;
(2)若點(diǎn)為邊延長線上一點(diǎn),,垂足為,交延長線于點(diǎn),請?jiān)趫D2中畫出圖形,并判斷(1)中的結(jié)論是否成立.若成立,請證明;若不成立,請寫出你的猜想并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE并延長交CB的延長線于點(diǎn)F,點(diǎn)M在BC邊上,且∠MDF=∠ADF。
(1)求證:△ADE≌△BFE;
(2)如果FM=CM,求證:EM垂直平分DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 的對(duì)角線 AC 與 BD 相交于點(diǎn) O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( 。
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com