【題目】在△ABC中,AB=6cm,AC=12cm,動(dòng)點(diǎn)D以1cm/s 的速度從點(diǎn)A出發(fā)到點(diǎn)B止,動(dòng)點(diǎn)E以2cm/s 的速度從點(diǎn)C出發(fā)到點(diǎn)A止,且兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)以點(diǎn)A、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),求運(yùn)動(dòng)的時(shí)間t.
【答案】解:當(dāng)動(dòng)點(diǎn)D、E同時(shí)運(yùn)動(dòng)時(shí)間為t時(shí),
則有AD=t,CE=2t,AE=12﹣2t.
∵∠A是公共角,
∴①當(dāng)∠ADE=∠B時(shí),△ADE∽△ABC,
有 ,即 ,
∴t=3;
②當(dāng)∠ADE=∠C時(shí),△ADE∽△ACB,
有 ,即
解得t=4.8.
綜上可得:當(dāng)點(diǎn)D、E同時(shí)運(yùn)動(dòng)3s和4.8s時(shí),以點(diǎn)A、D、E為頂點(diǎn)的三角形與△ABC相似.
【解析】根據(jù)題意可用含t的代數(shù)式分別表示出AD,CE,AE的長(zhǎng),抓住∠A是公共角,由此分兩種情況:①當(dāng)∠ADE=∠B時(shí),△ADE∽△ABC,②當(dāng)∠ADE=∠C時(shí),△ADE∽△ACB,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,建立方程求解即可。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的判定與性質(zhì)的相關(guān)知識(shí),掌握相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AD,BC是⊙O的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā)沿圖中某一個(gè)扇形順時(shí)針勻速運(yùn)動(dòng),設(shè)∠APB=y(單位:度),如果y與點(diǎn)P運(yùn)動(dòng)的時(shí)間x(單位:秒)的函數(shù)關(guān)系的圖象大致如圖2所示,那么點(diǎn)P的運(yùn)動(dòng)路線可能為( )
A.O→B→A→O
B.O→A→C→O
C.O→C→D→O
D.O→B→D→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在AB邊上,點(diǎn)D到點(diǎn)A的距離與點(diǎn)D到點(diǎn)C的距離相等.
(1)利用尺規(guī)作圖作出點(diǎn)D,不寫作法但保留作圖痕跡.
(2)若△ABC的底邊長(zhǎng)5,周長(zhǎng)為21,求△BCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( )
A. OA=OC,OB=ODB. OA=OC,AB∥CD
C. AB=CD,OA=OCD. ∠ADB=∠CBD,∠BAD=∠BCD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作AC的垂線交AC的延長(zhǎng)線于點(diǎn)E,連接BC交AD于點(diǎn)F.
(1)猜想ED與⊙O的位置關(guān)系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根據(jù)你的觀察,探究下面的問(wèn)題:
(1)a2+b2﹣4a+4=0,則a= .b= .
(2)已知x2+2y2﹣2xy+6y+9=0,求xy的值.
(3)已知△ABC的三邊長(zhǎng)a、b、c都是正整數(shù),且滿足2a2+b2﹣4a﹣6b+11=0,求△ABC的周長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在△ABC中,∠DBC與∠ECB分別為△ABC的兩個(gè)外角,若∠A=60°,∠DBC+∠ECB多少度;
(2)如圖2,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有怎樣的數(shù)量關(guān)系?為什么?
(3)如圖3,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A+∠D有怎樣的數(shù)量關(guān)系?為什么?
(4)如圖4,在五邊形ABCDE中,BP、CP分別平分外角∠NBC、∠MCB,∠P與∠A+∠D+∠E有怎樣的數(shù)量關(guān)系?(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)為(0,3),則方程ax2+bx+c=0(a≠0)的解為( )
A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在四邊形ABCD中,點(diǎn)E為AB延長(zhǎng)線上一點(diǎn),連接并延長(zhǎng)交AD延長(zhǎng)線于點(diǎn),,.(1)求證:;
圖1
(2)如圖2,連接交于點(diǎn),連接,若為的角平分線,為的角平分線,過(guò)點(diǎn)作交于點(diǎn), 求證:;
圖2備用圖
(3)在(2)的條件下,若,,求的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com