【題目】如圖1,在四邊形ABCD中,點EAB延長線上一點,連接并延長交AD延長線于點,.(1)求證:;

1

2)如圖2,連接于點,連接,若的角平分線,的角平分線,過點于點, 求證:;

2備用圖

3)在(2)的條件下,若,求的度數(shù).

【答案】1)見解析,(2)見解析,(3

【解析】

1)先根據(jù)平行線的判定證明AFBC,可得∠FDC=DCB,由已知可得∠CBE=DCB,由平行線的判定可得結(jié)論;
2)先根據(jù)垂直得∠HBC=90°=CBE+ABH,設(shè),則∠ABH,由平行線和角平分線的定義可推出,; ,即可得結(jié)論;
3)根據(jù)第(2)的結(jié)論,可得,由三角形的內(nèi)角和得,根據(jù)已知可得,過點,由平行線的性質(zhì)及已知條件可得∠BFE=30°

解:(1

,

,

,

2)過點

的角平分線,的角平分線

,

設(shè)

由(1)問可知,,,

,,,

,

,

,

,

,

;

3)由(2)得,,,

,

,

,

,

,

,

,

,

,

過點

故答案為:(1)見解析,(2)見解析,(3 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=6cm,AC=12cm,動點D以1cm/s 的速度從點A出發(fā)到點B止,動點E以2cm/s 的速度從點C出發(fā)到點A止,且兩點同時運動,當(dāng)以點A、D、E為頂點的三角形與△ABC相似時,求運動的時間t.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點A在y軸上,點B在x軸上,∠ABO=60°,若點D(1,0)且BD=2OD.把△ABO繞著點D逆時針旋轉(zhuǎn)m°(0<m<180)后,點B恰好落在初始Rt△ABO的邊上,此時的點B記為B′,則點B′的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點,點和點是坐標(biāo)軸上兩點,點為坐標(biāo)軸上一點,若三角形的面積為,則點坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點在第一象限,過點Ax軸作垂線,垂足為點B,連接OA,,點MO出發(fā),沿y軸的正半軸以每秒2個單位長度的速度運動,點N從點B出發(fā)以每秒3個單位長度的速度向x軸負方向運動,點M與點N同時出發(fā),設(shè)點M的運動時間為t秒,連接AM,ANMN

a的值;

當(dāng)時,

請?zhí)骄?/span>,,之間的數(shù)量關(guān)系,并說明理由;

試判斷四邊形AMON的面積是否變化?若不變化,請求出其值;若變化,請說明理由.

當(dāng)時,請求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=DB,∠1=∠2,請問添加下面哪個條件不能判斷△ABC≌△DBE的是( 。

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法,正確的是( )

A. ac=bc,a=b

B. 30.15°=30°15′

C. 一個圓被三條半徑分成面積比2:3:4的三個扇形,則最小扇形的圓心角為90°

D. 鐘表上的時間是940,此時時針與分針?biāo)傻膴A角是50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點P在BA的延長線上,PD切⊙O于點D,過點B作BE垂直于PD,交PD的延長線于點C,連接AD并延長,交BE于點E.

(1)求證:AB=BE;
(2)若PA=2,cosB= ,求⊙O半徑的長.

查看答案和解析>>

同步練習(xí)冊答案