【題目】閱讀理解:

為解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我們可以將x2﹣1視為一個(gè)整體,然后設(shè)x2﹣1=y,則原方程化為y2﹣5y+4=0,解此方程得:y1=1,y2=4.

當(dāng)y=1時(shí),x2﹣1═1,x=±

當(dāng)y=4時(shí),x2﹣1═4,x=±

∴原方程的解為:x1=,x2=﹣,x3=,x4=﹣

以上方法叫做換元法解方程,達(dá)到了降次的目的,體現(xiàn)了轉(zhuǎn)化思想.

運(yùn)用上述方法解方程:x4﹣8x2+12=0.

【答案】x1=,x2=﹣, x3=,x4=﹣

【解析】試題分析設(shè)y=x2在原方程轉(zhuǎn)化為y2﹣8y+12=0,利用因式分解法解方程求得y的值,然后利用直接開平方法求得x的值.

試題解析設(shè)y=x2在原方程轉(zhuǎn)化為y2﹣8y+12=0,:(y﹣2)(y﹣6)=0,解得y=2y=6,x2=2x2=6,x1=,x2=﹣,x3=,x4=﹣

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD的兩條對(duì)角線分別為68M、N分別是邊BC、CD的中點(diǎn),P是對(duì)角線BD上一點(diǎn),則PM+PN的最小值=___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,∠ABE=,且AB=AE,則DE的長度為(

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s,在一條筆直公路BD的上方A處有一探測儀,如圖,AD=24m,D=90°,第一次探測到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測得∠ABD=31°,2秒后到達(dá)C點(diǎn),測得∠ACD=50°.

1)求BC的距離.

2)通過計(jì)算,判斷此轎車是否超速.(tan31°≈0.6tan50°≈1.2,結(jié)果精確到1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn).∠AEF=90°,且EF交正方形外角∠DCG的角平分線CF于點(diǎn)F,求證:AE=EF

經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連接ME,則AM=EC,易證AME≌△ECF,所以AE=EF

在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

1)小穎提出:如圖2,如果把點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn),其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;

2)小華提出:如圖3,點(diǎn)EBC的延長線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立.你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明有5張寫著不同數(shù)字的卡片,請按要求抽出卡片,完成下列各問題:

1)從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,如何抽?最大值是多少?答:我抽取的2張卡片是________________,乘積的最大值為________

2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,如何抽?最小值是多少?答:我抽取的2張卡片是________、________,商的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:

120筐白菜中,最重的一筐比最輕的一筐多重多少千克?

2)與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)超過或不足多少千克?

3)若白菜每千克售價(jià)2.8元,則出售這20筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用小立方塊搭成的幾何體,主視圖和俯視圖如下,

填空:這樣的幾何體有________種可能,它最多需要________小立方塊,最少需要________小立方塊.

請畫出最多和最少時(shí)的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

1)(﹣63+17+(﹣23+68;

23+(﹣+(﹣3+2

3;

4

查看答案和解析>>

同步練習(xí)冊答案