【題目】如圖1,在平面直角坐標系中,拋物線與x軸交于A、B兩點(點A在點B左側),與y軸交于C點,點E在第一象限且四邊形ACBE為矩形.
(1)求∠BCE的度數(shù);
(2)如圖2,F(xiàn)為線段BC上一動點,P為第四象限內拋物線上一點,連接CP、FP、BP、EF,M,N分別是線段CP,F(xiàn)P的中點,連接MN,當△BCP面積最大,且MN+EF最小時,求PF的長度;
(3)如圖3,將△AOC繞點O順時針旋轉一個角度α(0°<α<180°),點A,C的對應點分別為A',C',直線A'C'與x軸交于點G,G在x軸正半軸上且OG=.線段KH在直線A'C'上平移( K在H左邊),且KH=5,△KHC是否能成為等腰三角形?若能,請求出所有符合條件的點K的坐標;若不能,請說明理由.
【答案】(1)30°;(2)PF=;(3)滿足條件的點K的坐標為K(, )或(, )或(, )或(, )或(, ).
【解析】試題分析:(1)在Rt△OBC中,tan∠OBC=,推出∠OBC=30°,由四邊形ACBE是矩形,得出QB=QC,可得∠BCE=∠QBC=30°;
(2)如圖2中,作CD⊥y軸,FH⊥CD于H,EH′⊥CD于H′交BC于點F′,設P(m, ),根據(jù)S△PBC=S△POC+S△POB-S△OBC,構建二次函數(shù),由重合時的性質確定點P的坐標,由CM=MP,FN=P,推出MN=CF,在Rt△FCH中,易知∠FCH=30°,FH=CF,得出FH=MN,進而得出MN+EF=EF+FH,從而知F與F′H與H′重合時,MN+EF的值最小,求出點F的坐標即可;
(3)如圖3中,作OM⊥KH與M,直線KH交y軸于點P,作CN⊥KH于N,,確定直線KH的解析式,求出點N的坐標,分三種情況分別求解即可解決問題.
試題解析:(1)如圖1中,設AB交CE于Q.
令y=0,得到x2﹣﹣3=0,
解得x=﹣或3,
∴A(﹣,0),B(3,0),
在Rt△OBC中,tan∠OBC==,
∴∠OBC=30°,
∵四邊形ACBE是矩形,
∴QB=QC,
∴∠BCE=∠QBC=30°.
(2)如圖2中,作CD⊥y軸,F(xiàn)H⊥CD于H,EH′⊥CD于H′交BC于F′.
設P(m, m2﹣m﹣3),
S△PBC=S△POC+S△POB﹣S△OBC=×3×m+×3×(﹣m2+m+3)﹣×3×3
=﹣m2+m
=﹣(m﹣)2+,
∵﹣<0,
∴m=時,△PBC的面積最大,此時P(,﹣),
∵CM=MP,F(xiàn)N=NP,
∴MN=CF,
在Rt△FCH中,易知∠FCH=30°,
∴FH=CF,
∴FH=MN,
∴MN+EF=EF+FH,
∴當F與F′重合,H與H′重合時,MN+EF的值最小.
易知E(2,3),F(xiàn)′(2,﹣1),
∴PF==.
(3)如圖3中,作OM⊥KH于M,直線KH交y軸于P,作CN⊥KH于N.
在Rt△OMG中,易知,OM=,OM=,
∴MG==2,
∵tan∠POG==,
∴=,
∴OP=,
∴直線PG的解析式為y=﹣x+,
∵CN⊥PG,
∴直線CN的解析式為y=x﹣3,
由,解得,
∴N(,),
①當CK=CH時,NK=NH=,
點N向上平移個單位,向左平移2個單位得到K,
∴K(,).
②當CK=KH時,設K(m,﹣m+),
∴m2+(﹣m++3)2=52,
解得m=,
∴K(,)或(,),
③當CH=KH=5時,同法可得H(,)或(,),
點H向上平移3個單位,向左平移4個單位得到K,
∴K(,)或(,),
綜上所述,滿足條件的點K的坐標為K(,)或(,)或(,)或(,)或(,).
科目:初中數(shù)學 來源: 題型:
【題目】在甲村至乙村間有一條公路,在C處需要爆破,已知點C與公路上的停靠站A的距離為300米,與公路上的另一停靠站B的距離為400米,且CA⊥CB,如圖所示,為了安全起見,爆破點C周圍半徑250米范圍內不得進入,問:在進行爆破時,公路AB段是否有危險?是否需要暫時封鎖?請用你學過的知識加以解答.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問題
(1)在圖中建立正確的平面直角坐標系;
(2)根據(jù)所建立的坐標系,寫出B和C的坐標;
(3)計算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若實數(shù)m,n,p滿足m<n<p(mp<0)且|p|<|n|<|m|,則|x﹣m|+|x+n|+|x+p|的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結FC,當△EFC是直角三角形時,那么BE的長為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個正方體的六個面上分別標有1、2、3、4、5、6,根據(jù)圖中從各個方向看到的數(shù)字,解答下面的問題:“?”處的數(shù)字是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=25°,矩形ABCD的邊BC在OM上,對角線AC⊥ON.
(1)求∠ACD度數(shù);
(2)當AC=5時,求AD的長.(參考數(shù)據(jù):sin25°=0.42;cos25°=0.91;tan25°=0.47,結果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知、、、是正方形網(wǎng)格紙上的四個格點,根據(jù)要求在網(wǎng)格中畫圖并標注相關字母.
①畫線段.
②畫直線.
③過點畫的垂線,垂足為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com