【題目】在直線上取,,三點(diǎn),使得,,如果點(diǎn)是線段的中點(diǎn),則線段的長度為______
【答案】或
【解析】
根據(jù)題意,分兩種情況討論:
①當(dāng)點(diǎn)C在線段AB的延長線上時,AC=7,如果點(diǎn)O是線段AC的中點(diǎn),則線段OCAC,進(jìn)而求得OB;
②當(dāng)點(diǎn)C在線段AB上時,AC=1,如果點(diǎn)O是線段AC的中點(diǎn),則線段OCAC,進(jìn)而求得OB.
分兩種情況討論:
①當(dāng)點(diǎn)C在線段AB的延長線上時(如圖1),AC=AB+BC=4+3=7(cm).
∵O是線段AC的中點(diǎn),
∴OCAC=3.5cm,
則OB=OC﹣BC=3.5﹣3=0.5(cm);
②當(dāng)點(diǎn)C在線段AB上時(如圖2),AC=AB﹣BC=4﹣3=1(cm).
∵O是線段AC的中點(diǎn),
∴OCAC=0.5cm.
則OB=OC+BC=0.5+3=3.5(cm).
綜上所述:線段OC的長度為0.5cm或3.5cm.
故答案為:0.5cm或3.5cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳佳想探究一元三次方程x3+2x2-x-2=0的解的情況.根據(jù)以往的學(xué)習(xí)經(jīng)驗(yàn)他想到了方程與函數(shù)的關(guān)系:一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一次方程kx+b=0(k≠0)的解;二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一元二次方程ax2+bx+c=0(a≠0)的解.如:二次函數(shù)y=x2-2x-3的圖象與x軸的交點(diǎn)為(-1,0)和(3,0),交點(diǎn)的橫坐標(biāo)-1和3即為方程x2-2x-3=0的解.
根據(jù)以上方程與函數(shù)的關(guān)系,若知道函數(shù)y=x3+2x2-x-2的圖象與x軸交點(diǎn)的橫坐標(biāo),即可知道方程x3+2x2-x-2=0的解.
佳佳為了解函數(shù)y=x3+2x2-x-2的圖象,通過描點(diǎn)法畫出函數(shù)的圖象:
(1)直接寫出m的值________,并畫出函數(shù)圖象;
(2)根據(jù)表格和圖象可知,方程的解有________個,分別為________________;
(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx﹣2的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),過A作AC⊥x軸于點(diǎn)C.已知cos∠AOC=,OA=.
(1)求反比例函數(shù)及直線AB的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南岸區(qū)正全力爭創(chuàng)全國衛(wèi)生城區(qū)和全國文明城區(qū)(簡稱“兩城同創(chuàng)”).某街道積極響應(yīng)“兩城同創(chuàng)”活動,投入一定資金綠化一塊閑置空地,購買了甲、乙兩種樹木共72棵,甲種樹木單價是乙種樹木單價的,且乙種樹木每棵80元,共用去資金6160元.
(1)求甲、乙兩種樹木各購買了多少棵?
(2)經(jīng)過一段時間后,種植的這批樹木成活率高,綠化效果好.該街道決定再購買一批這兩種樹木綠化另一塊閑置空地,兩種樹木的購買數(shù)量均與第一批相同,購買時發(fā)現(xiàn)甲種樹木單價上漲了a%,乙種樹木單價下降了,且總費(fèi)用為6804元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個長方體長,寬,高.從這個長方體的一個角上挖掉一個棱長的正方體,剩下部分的體積是(______),剩下部分的表面積是(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市正在開展“食品安金城市”創(chuàng)建活動,為了調(diào)查學(xué)生對食品安全知識的了解情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷.將調(diào)查結(jié)果按照“:正常了解;:了解;:了解較少;:不了解”四類分別進(jìn)行統(tǒng)計(jì),并繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整).
請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了_____名學(xué)生;
(2)扇形統(tǒng)計(jì)圖中所在扇形的圓心角度數(shù)為_____度;
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校共有名學(xué)生,請你估計(jì)對食品安全知識“非常了解”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于C點(diǎn),點(diǎn)E在第一象限且四邊形ACBE為矩形.
(1)求∠BCE的度數(shù);
(2)如圖2,F(xiàn)為線段BC上一動點(diǎn),P為第四象限內(nèi)拋物線上一點(diǎn),連接CP、FP、BP、EF,M,N分別是線段CP,F(xiàn)P的中點(diǎn),連接MN,當(dāng)△BCP面積最大,且MN+EF最小時,求PF的長度;
(3)如圖3,將△AOC繞點(diǎn)O順時針旋轉(zhuǎn)一個角度α(0°<α<180°),點(diǎn)A,C的對應(yīng)點(diǎn)分別為A',C',直線A'C'與x軸交于點(diǎn)G,G在x軸正半軸上且OG=.線段KH在直線A'C'上平移( K在H左邊),且KH=5,△KHC是否能成為等腰三角形?若能,請求出所有符合條件的點(diǎn)K的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,AB=AC,∠ABC =,D是BC邊上一點(diǎn),以AD為邊作,使AE=AD,+=180°.
(1)直接寫出∠ADE的度數(shù)(用含的式子表示);
(2)以AB,AE為邊作平行四邊形ABFE,
①如圖2,若點(diǎn)F恰好落在DE上,求證:BD=CD;
②如圖3,若點(diǎn)F恰好落在BC上,求證:BD=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC中,AC=BC,∠A=30°,點(diǎn)D在AB邊上且∠ADC=45°.
(1)求∠BCD的度數(shù);
(2)將圖①中的△BCD繞點(diǎn)B順時針旋轉(zhuǎn),得到△BC′D′.當(dāng)點(diǎn)D′恰好落在BC邊上時,如圖②所示,連接C′C并延長交AB于點(diǎn)E.
①求∠C′CB的度數(shù);
②求證:△C′BD′≌△CAE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com