【題目】一個(gè)邊長(zhǎng)為4的等邊三角形ABC的高與⊙O的直徑相等,如圖放置,⊙OBC相切于點(diǎn)C⊙OAC相交于點(diǎn)E,則CE的長(zhǎng)是:

A. B. C. 2 D. 3

【答案】D

【解析】

試題連接OC,并過(guò)點(diǎn)OOF⊥CEF,根據(jù)等邊三角形的性質(zhì),等邊三角形的高等于底邊高的倍.題目中一個(gè)邊長(zhǎng)為4cm的等邊三角形ABC⊙O等高,說(shuō)明⊙O的半徑為,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得出FC的長(zhǎng),利用垂徑定理即可得出CE的長(zhǎng).

連接OC,并過(guò)點(diǎn)OOF⊥CEF,

∵△ABC為等邊三角形,邊長(zhǎng)為4,

高為2,即OC=,

∵∠ACB=60°,故有∠OCF=30°,

Rt△OFC中,可得FC=,

∴CE=3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,直線ykx+2與坐標(biāo)軸交于A、B兩點(diǎn),OA=4,點(diǎn)Cx軸正半軸上的點(diǎn),且OCOB,過(guò)點(diǎn)CAB的垂線,交y軸于點(diǎn)D,拋物線yax2+bx+c過(guò)AB、C三點(diǎn).

(1)求拋物線函數(shù)關(guān)系式;

(2)如圖②,點(diǎn)P是射線BA上一動(dòng)點(diǎn)(不與點(diǎn)B重合),連接OP,過(guò)點(diǎn)OOP的垂線交直線CD于點(diǎn)Q.求證:OPOQ;

(3)如圖③,在(2)的條件下,分別過(guò)P、Q兩點(diǎn)作x軸的垂線,分別交x軸于點(diǎn)E、F,交拋物線于點(diǎn)M、N,是否存在點(diǎn)P的位置,使以P、QM、N為頂點(diǎn)的四邊形為平行四邊形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、cRtABCRtBED邊長(zhǎng),易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱(chēng)為“勾系一元二次方程”.

請(qǐng)解決下列問(wèn)題

寫(xiě)出一個(gè)“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;

x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長(zhǎng)是,ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小晗家客廳裝有一種三位單極開(kāi)關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個(gè)開(kāi)關(guān)均可打開(kāi)對(duì)應(yīng)的一盞電燈,既可三盞、兩盞齊開(kāi),也可分別單盞開(kāi).因剛搬進(jìn)新房不久,不熟悉情況.

(1)若小晗任意按下一個(gè)開(kāi)關(guān),正好樓梯燈亮的概率是多少?

(2)若任意按下一個(gè)開(kāi)關(guān)后,再按下另兩個(gè)開(kāi)關(guān)中的一個(gè),則正好客廳燈和走廊燈同時(shí)亮的概率是多少?請(qǐng)用樹(shù)狀圖或列表法加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,分析下列五個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有________個(gè)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB⊙O的直徑,銳角∠DAB的平分線AC⊙O于點(diǎn)C,作CD⊥AD,垂足為D,直線CDAB的延長(zhǎng)線交于點(diǎn)E

1)求證:直線CD⊙O的切線;

2)當(dāng)AB2BE,且CE=時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C1:y=﹣x2+4x﹣3,把拋物線C1先向右平移3個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,得到拋物線C2, 將拋物線C1和拋物線C2這兩個(gè)圖象在x軸及其上方的部分記作圖象M.若直線y=kx+ (k≥0)與圖象M至少有2個(gè)不同的交點(diǎn),則k的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線x軸交于點(diǎn)A,B,與軸交于點(diǎn)C。過(guò)點(diǎn)CCDx軸,交拋物線的對(duì)稱(chēng)軸于點(diǎn)D,連結(jié)BD。已知點(diǎn)A坐標(biāo)為(-1,0)。

1)求該拋物線的解析式;

2)求梯形COBD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD是ABC的角平分線,O經(jīng)過(guò)A、B、D三點(diǎn),過(guò)點(diǎn)B作BEAD,交O于點(diǎn)E,連接ED.

(1)求證:EDAC;

(2)連接AE,試證明:ABCD=AEAC.

查看答案和解析>>

同步練習(xí)冊(cè)答案