【題目】已知:A、O、B三點(diǎn)在同一直線上,OE、OD分別平分∠AOC、∠BOC.
(1)求∠EOD的度數(shù);
(2)若∠AOE=50°,求∠BOC的度數(shù).
【答案】
(1)解:∵OE、OD分別平分∠AOC、∠BOC,
∴∠EOC= ∠AOC,∠COD= ∠BOC,
∴∠EOD=∠EOC+∠COD= ∠AOC+ ∠BOC= ∠AOB,
又∵A、O、B三點(diǎn)在同一直線上,
∴∠AOB=180°,
∴∠EOD= ∠AOB=90°
(2)解:∵OE平分∠AOC,∠AOE=50°,
∴∠AOC=2∠AOE=100°,
∴∠BOC=180°﹣∠AOC=80°
【解析】(1)由于OE、OD分別平分∠AOC、∠BOC,所以∠EOC= ∠AOC,∠COD= ∠BOC,進(jìn)而得出∠EOD=∠EOC+∠COD= ∠AOB=90°;(2)由OE平分∠AOC,∠AOE=50°,得出∠AOC=2∠AOE=100°,再根據(jù)鄰補(bǔ)角定義得出∠BOC=180°﹣∠AOC=80°.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解角的平分線(從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是由若干個(gè)小圓圈堆成的一個(gè)形如等邊三角形的圖案,最上面一層有一個(gè)圓圈,以下各層均比上一層多一個(gè)圓圈,一共堆了n層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以算出圖1中所有圓圈的個(gè)數(shù)為1+2+3+…+n= .
如果圖中的圓圈共有11層,請(qǐng)問(wèn):自上往下,在每個(gè)圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)1,2,3,4,…,則最底層中間這個(gè)圓圈中的數(shù)是;自上往下,在每個(gè)圓圈中按圖4的方式填上一串連續(xù)的整數(shù)
﹣23,﹣22,﹣21,﹣20,…,則所有圓圈中各數(shù)之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,AB是⊙O的直徑,點(diǎn)P在弧AB上(不含點(diǎn)A、B),把△AOP沿OP對(duì)折,點(diǎn)A的對(duì)應(yīng)點(diǎn)C恰好落在⊙O上.
(1)當(dāng)P、C都在AB上方時(shí)(如圖1),判斷PO與BC的位置關(guān)系(只回答結(jié)果);
(2)當(dāng)P在AB上方而C在AB下方時(shí)(如圖2),(1)中結(jié)論還成立嗎?證明你的結(jié)論;
(3)當(dāng)P、C都在AB上方時(shí)(如圖3),過(guò)C點(diǎn)作CD⊥直線AP于D,且CD是⊙O的切線,證明:AB=4PD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA,PB分別與⊙O相切于A,B兩點(diǎn),∠ACB=60°.
(1)求∠P的度數(shù);
(2)若⊙O的半徑長(zhǎng)為4cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程x2+5x+1=0的兩個(gè)實(shí)數(shù)根分別為x1、x2 , 則x12+x22= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CA⊥AB,垂足為點(diǎn)A,AB=12,AC=6,射線BM⊥AB,垂足為點(diǎn)B,一動(dòng)點(diǎn)E從A點(diǎn)出發(fā)以2厘米/秒沿射線AN運(yùn)動(dòng),點(diǎn)D為射線BM上一動(dòng)點(diǎn),隨著E點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),且始終保持ED=CB,當(dāng)點(diǎn)E經(jīng)過(guò) 秒時(shí),△DEB與△BCA全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次數(shù)學(xué)測(cè)驗(yàn)中,五位同學(xué)的分?jǐn)?shù)分別是89,91,105,105,110,這組數(shù)據(jù)的中位數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個(gè)問(wèn)題:
如圖1,△ABC中,∠A=90°,∠B=30°,點(diǎn)D,E分別在AB,BC上,且∠CDE=90°.當(dāng)BE=2AD時(shí),圖1中是否存在與CD相等的線段?若存在,請(qǐng)找出并加以證明,若不存在,說(shuō)明理由.
小明通過(guò)探究發(fā)現(xiàn),過(guò)點(diǎn)E作AB的垂線EF,垂足為F,能得到一對(duì)全等三角形(如圖2),從而將解決問(wèn)題.
請(qǐng)回答:
(1)小明發(fā)現(xiàn)的與CD相等的線段是 .
(2)證明小明發(fā)現(xiàn)的結(jié)論;
參考小明思考問(wèn)題的方法,解決下面的問(wèn)題:
(3)如圖3,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在BC上,BD=2DC,點(diǎn)E在AD上,且∠BEC=135°,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把0.0813寫(xiě)成a×10n(1≤a<10,n為整數(shù))的形式,則a為( )
A.1
B.﹣2
C.0.813
D.8.13
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com