【題目】如圖 1,在等腰△ABC 中,AB=AC,點 D,E 分別為 BC,AB 的中點,連接 AD.在線段 AD 上任取一點 P,連接 PB,PE.若 BC=4,AD=6,設(shè) PD=x(當點 P 與點 D 重合時,x 的值為 0),PB+PE=y.

小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y 隨自變量x 的變化而變化的規(guī)律進行了探究. 下面是小明的探究過程,請補充完整:

(1)通過取點、畫圖、計算,得到了 x 與 y 的幾組值,如下表:

x

0

1

2

3

4

5

6

y

5.2

4.2

4.6

5.9

7.6

9.5

說明:補全表格時,相關(guān)數(shù)值保留一位小數(shù).(參考數(shù)據(jù):≈1.414,≈1.732,≈2.236)

(2)建立平面直角坐標系(圖 2),描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;

(3)求函數(shù) y 的最小值(保留一位小數(shù)),此時點 P 在圖 1 中的什么位置.

【答案】(1)4.5(2)根據(jù)數(shù)據(jù)畫圖見解析;(3)函數(shù) y 的最小值為4.2,線段AD上靠近D點三等分點處.

【解析】

(1)取點后測量即可解答;(2)建立坐標系后,描點、連線畫出圖形即可;(3)根據(jù)所畫的圖象可知函數(shù)y的最小值為4.2,此時點 P 在圖 1 中的位置為.線段 AD 上靠近 D 點三等分點處.

(1)根據(jù)題意,作圖得,y=4.5故答案為:4.5

(2)根據(jù)數(shù)據(jù)畫圖得

(3)根據(jù)圖象,函數(shù) y 的最小值為 4.2,此時點 P 在圖 1 中的位置為.線段 AD 上靠近 D 點三等分點處.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC的平分線與∠ACB的外角的平分線相交于點P,連接AP

1)求證:PA平分∠BAC的外角∠CAM;

2)過點CCEAPE是垂足,并延長CEBM于點D.求證:CE=ED

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的是( )

A. 一組對邊相等,另一組對邊平行的四邊形一定是平行四邊形

B. 對角線相等的四邊形一定是矩形

C. 兩條對角線互相垂直的四邊形一定是菱形

D. 兩條對角線相等且互相垂直平分的四邊形一定是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形中,,,,上一點,延長線上一點,且

1)試說明:;

2)在圖中,若點上,且,試猜想、、之間的數(shù)量關(guān)系,并證明所歸納結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,且AD=12cm.點P從點A出發(fā),以3cm/s的速度在射線AD上運動;同時,點Q從點C出發(fā),以1cm/s的速度在射線CB上運動.運動時間為t,當t=______秒(s)時,點P、Q、CD構(gòu)成平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出如下定義:對于⊙O 的弦 MN 和⊙O 外一點 P(M,O,N 三點不共線,且點 P,O 在直線 MN 的異側(cè)),當∠MPN+∠MON=180°時,則稱點 P 是線段 MN 關(guān)于點 O 的關(guān)聯(lián)點.圖 1 是點 P 為線段 MN 關(guān)于點 O 的關(guān)聯(lián)點的示意圖.

在平面直角坐標系 xOy 中,⊙O 的半徑為 1.

(1)如圖 2,已知 M(),N( ,﹣),在 A(1,0),B(1,1),C(,0)三點中,是線段 MN 關(guān)于點 O 的關(guān)聯(lián)點的是哪個點;

(2)如圖 3,M(0,1),N(,﹣),點 D 是線段 MN 關(guān)于點 O 的關(guān)聯(lián)點.

①求∠MDN 的大小;

②在第一象限內(nèi)有一點 E(m,m),點 E 是線段 MN 關(guān)于點 O 的關(guān)聯(lián)點,判斷△MNE 的形狀,并直接寫出點 E 的坐標;

③點 F 在直線 y=﹣x+2 上,當∠MFN≥∠MDN 時,求點 F 的橫坐標 x 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸、軸分別相交于點A和B.

(1)直接寫出坐標:點A ,點B ;

2以線段AB為一邊在第一象限內(nèi)作ABCD,其頂點D(, )在雙曲線 ()上.

①求證:四邊形ABCD是正方形;

②試探索:將正方形ABCD沿軸向左平移多少個單位長度時,點C恰好落在雙曲線 ()上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,EF分別是BC,AC的中點,以AC為斜邊作RtADC,若∠CAD=∠BAC45°,則下列結(jié)論:①CDEF;②EFDF;③DE平分∠CDF;④∠DEC30°;⑤ABCD;其中正確的是_____(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù).

(1)求證:它的圖象與x軸必有兩個不同的交點;

(2)這條拋物線與x軸交于兩點A(x1,0),B(x2,O)(x1<x2),y軸交于點C,AB=4,⊙MA,B,C三點,求扇形MAC的面積S;

(3)(2)的條件下,拋物線上是否存在點P,PD⊥x軸于D,使△PBD被直線BC分成面積比為1:2的兩部分?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案