【題目】如圖,已知:△ABC中,AB=AC,M、D、E分別是BC、AB、AC的中點(diǎn).
(1)求證:MD=ME;
(2)若MD=3,求AC的長.
【答案】
(1)證明:連接AM,∵AB=AC,M是BC的中點(diǎn),∴AM⊥BC.∵在Rt△ABM和Rt△ACM中,∠BMA=∠CMA=90°,D、E分別是AB、AC的中點(diǎn),∴MD= AB,ME= AC .∵AB=AC,∴MD=ME .
(2)解:∵M(jìn)D=3,
MD= AB,∴AC=AB=6.
【解析】(1)連接AM利用等腰三角形的三線合一得出AM⊥BC,然后利用直角三角形斜邊上的中線等于斜邊的一半得出結(jié)論;
(2)由(1)知MD= AB又AB=AC,得出結(jié)論。
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和直角三角形斜邊上的中線的相關(guān)知識點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角);直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析表達(dá)式為y=- x-1,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過定點(diǎn)A(2,0),B(-1,3),直線l1與l2交于點(diǎn)C.
(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長是( 。
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=36°,∠C=72°,∠DBC=36°.
(1)求∠1的度數(shù);
(2)求證:BC=BD=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系xOy中,反比例函數(shù)y1= (x>0)的圖象與一次函數(shù)y2=kx-k的圖象的交點(diǎn)為A(m,2).
(1)求一次函數(shù)的解析式;
(2)觀察圖像,直接寫出使y1≥y2的x的取值范圍.
(3)設(shè)一次函數(shù)y=kx-k的圖象與y軸交于點(diǎn)B,若點(diǎn)P是x軸上一點(diǎn),且滿足△PAB的面積是4,請寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明利用周末去做社會調(diào)查,了解美的空調(diào)的質(zhì)量情況.他設(shè)計(jì)的問題是:你覺得美的空調(diào)好嗎?你對他設(shè)計(jì)的問題有何看法,為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com