【題目】如圖,直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E,D,連接EC,CD.
(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED=,⊙O的半徑為3,求OA的長.
【答案】(1)見解析;(2)OA=5.
【解析】
(1)連接OC,通過等腰三角形中線的性質(zhì)得出OC⊥AB,即可證明直線AB是⊙O的切線;
(2)通過證明△BCD∽△BEC,可得,設(shè)BD=x,則BC=2x,代入BC2=BDBE中,即可求得BD=2,根據(jù)OA=OB=BD+OD即可求出OA的長.
(1)證明:如圖,連接OC,
∵OA=OB,CA=CB,
∴OC⊥AB,
∴AB是⊙O的切線.
(2)解∵tan∠CED=,
∴.
∵ED是直徑,
∴∠ECD=90°,
∴∠E+∠EDC=90°.
又∵∠BCD+∠OCD=90°,∠OCD=∠ODC(OC=OD),
∴∠BCD=∠E.
又∵∠CBD=∠EBC,
∴△BCD∽△BEC.
∴ .
設(shè)BD=x,則BC=2x,
∵△BCD∽△BEC,
∴BC2=BDBE,
∴(2x)2=x(x+6).
∴x1=0,x2=2.
∵BD=x>0,
∴BD=2.
∴OA=OB=BD+OD=3+2=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明袋子中有1個紅球和n個白球,這些球除顏色外無其他差別.
(1)從袋中隨機摸出一個球,記錄其顏色,然后放回.大量重復(fù)該實驗,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.25,求n的值.
(2)在(1)的條件下,從袋中隨機摸出兩個球,求兩個球顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紀(jì)中三鑫雙語學(xué)校準(zhǔn)備開展“陽光體育活動”,決定開設(shè)足球、籃球、乒乓球、羽毛球、排球等球類活動,為了了解學(xué)生對這五項活動的喜愛情況,隨機調(diào)查了m名學(xué)生(每名學(xué)生必選且只能選擇這五項活動中的一種).
根據(jù)以上統(tǒng)計圖提供的信息,請解答下列問題:
(1)m= ,n= .
(2)補全上圖中的條形統(tǒng)計圖.
(3)在抽查的m名學(xué)生中,有小薇、小燕、小紅、小梅等10名學(xué)生喜歡羽毛球活動,學(xué)校打算從小薇、小燕、小紅、小梅這4名女生中,選取2名參加全市中學(xué)生女子羽毛球比賽,請用列表法或畫樹狀圖法,求同時選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母A、B、C、D代表)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點D是AB邊上的一點,連結(jié)CD,過點C作CD的垂線,與經(jīng)過點C、D、B的圓交于點E,連結(jié)DE,交CB于點F.若AD=1,DB=3,則線段DE的長為_____;△CDF的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.“概率為0.0001的事件”是不可能事件
B.任意擲一枚質(zhì)地均勻的硬幣10次,正面向上的一定是5次
C.“任意畫出一個等邊三角形,它是軸對稱圖形”是隨機事件
D.“任意畫出一個平行四邊行,它是中心對稱圖形”是必然事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仿照例題完成任務(wù):
例:如圖1,在網(wǎng)格中,小正方形的邊長均為,點,,,都在格點上,與相交于點,求的值.
解析:連接,,導(dǎo)出,再根據(jù)勾股定理求得三角形各邊長,然后利用三角函數(shù)解決問題.具體解法如下:
連接,,則,
,根據(jù)勾股定理可得:
,,,
,
是直角三角形,,
即.
任務(wù):
(1)如圖2,,,,四點均在邊長為的正方形網(wǎng)格的格點上,線段,相交于點,求圖中的正切值;
(2)如圖3,,,均在邊長為的正方形網(wǎng)格的格點上,請你直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在⊙O中,直徑AB⊥弦CD于G,E為DC延長線上一點
(1)如圖1,BE交⊙O于點F,求證:∠EFC=∠BFD;
(2)如圖2,當(dāng)CD也是直徑,EF切⊙O于F,連接DF.若tan∠D=,求sin∠E的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為( 。
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E為CD的中點,F為BE上的一點,連接CF并延長交AB于點M,MN⊥CM交射線AD于點N
(1)如圖1,當(dāng)點F為BE的中點時,求證:AM=CE;
(2)如圖2,若==n(n≥3)時,請直接寫出的值;
(3)若矩形ABCD(AB>BC)對角線AC交MN于T,H為邊BC上一點,∠CMH=45°且=(如圖3).若CF平分∠ACB,請直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com