【題目】某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:
(1)當(dāng)有n張桌子時(shí),兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待70位顧客共同就餐,但餐廳只有18張這樣的餐桌,若你是這個(gè)餐廳的經(jīng)理,你打算選擇哪種方式來(lái)擺放餐桌,為什么?
【答案】(1)當(dāng)有n張桌子時(shí),第一種擺放方式能坐人,第二種擺放方式能坐人;(2)選擇第一種擺放方式來(lái)擺放餐桌,見(jiàn)解析
【解析】
(1)分別探索出當(dāng)有n張桌子時(shí),第一種擺放方式和第二種擺放方式能坐的人數(shù)即可;
(2)將n=18代入(1)中代數(shù)式,然后比較大小即可判斷.
解:(1)第一種擺放方式中:一張桌子可坐6=(4×1+2)人;
兩張桌子可坐10=(4×2+2)人;
三張桌子可坐14=(4×3+2)人;
∴第一種擺放方式,當(dāng)有n張桌子時(shí),能坐人;
第二種擺放方式中:一張桌子可坐6=(2×1+4)人;
兩張桌子可坐8=(2×2+4)人;
三張桌子可坐10=(2×3+4)人;
∴第二種擺放方式中:當(dāng)有n張桌子時(shí),能坐人.
(2)當(dāng)時(shí),第一種擺放方式能坐人
第二種擺放方式能坐人
因?yàn)?/span>
所以應(yīng)該選擇第一種擺放方式來(lái)擺放餐桌.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜加工公司先后兩批次收購(gòu)蒜薹(tái)共100噸.第一批蒜薹價(jià)格為4000元/噸;因蒜薹大量上市,第二批價(jià)格跌至1000元/噸.這兩批蒜薹共用去16萬(wàn)元.
(1)求兩批次購(gòu)進(jìn)蒜薹各多少噸;
(2)公司收購(gòu)后對(duì)蒜薹進(jìn)行加工,分為粗加工和精加工兩種:粗加工每噸利潤(rùn)400元,精加工每噸利潤(rùn)1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤(rùn),精加工數(shù)量應(yīng)為多少噸?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,則∠MOD的度數(shù)是_____________________度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】分別把下列各數(shù)填在所屬的集合內(nèi):
+29,﹣3,80%,﹣1,0.3,0,﹣31415,6,
(1)正數(shù)集合:{_____…};
(2)負(fù)數(shù)集合:{_____…};
(3)整數(shù)集合:{_____…};
(4)分?jǐn)?shù)集合:{_____…}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為.在坐標(biāo)軸上找一點(diǎn)C,直線AB上找一點(diǎn)D,在雙曲線y=找一點(diǎn)E,若以O,C,D,E為頂點(diǎn)的四邊形是有一組對(duì)角為60的菱形,那么符合條件點(diǎn)D的坐標(biāo)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于、兩點(diǎn),且點(diǎn)的坐標(biāo)為,將直線向上平移個(gè)單位,交雙曲線于點(diǎn),交軸于點(diǎn),且的面積是.給出以下結(jié)論:(1);(2)點(diǎn)的坐標(biāo)是;(3);(4).其中正確的結(jié)論有
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點(diǎn)F.
(1)判斷BF與AC的數(shù)量關(guān)系并說(shuō)明理由;
(2)如圖2,將△ACD沿線段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DE∥AM時(shí),判斷NE與AC的數(shù)量關(guān)系并說(shuō)明理由.
【答案】(1)BF=AC,理由見(jiàn)解析;(2)NE=AC,理由見(jiàn)解析.
【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.
試題解析:
(1)BF=AC,理由是:
如圖1,∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEF=90°,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵∠AFE=∠BFD,
∴∠DAC=∠EBC,
在△ADC和△BDF中,
∵,
∴△ADC≌△BDF(AAS),
∴BF=AC;
(2)NE=AC,理由是:
如圖2,由折疊得:MD=DC,
∵DE∥AM,
∴AE=EC,
∵BE⊥AC,
∴AB=BC,
∴∠ABE=∠CBE,
由(1)得:△ADC≌△BDF,
∵△ADC≌△ADM,
∴△BDF≌△ADM,
∴∠DBF=∠MAD,
∵∠DBA=∠BAD=45°,
∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,
即∠ABE=∠BAN,
∵∠ANE=∠ABE+∠BAN=2∠ABE,
∠NAE=2∠NAD=2∠CBE,
∴∠ANE=∠NAE=45°,
∴AE=EN,
∴EN=AC.
【題型】解答題
【結(jié)束】
17
【題目】已知x1,x2是方程2x2﹣2nx+n(n+4)=0的兩根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)為爭(zhēng)創(chuàng)全國(guó)文明衛(wèi)生城,2016年區(qū)政府對(duì)區(qū)綠化工程投入的資金是2000萬(wàn)元,2018年投的資金是2420萬(wàn)元,且2017年和2018年,每年投入資金的年平均增長(zhǎng)率相同.
(1)求該區(qū)對(duì)區(qū)綠化工程投入資金的年平均增長(zhǎng)率;
(2)若投入資金的年平均增長(zhǎng)率不變,那么該區(qū)在2020年需投入資金多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在直角坐標(biāo)系中,A(﹣2,4)B(﹣4,2);A1、B1是A、B關(guān)于y軸的對(duì)稱點(diǎn);
(1)請(qǐng)?jiān)趫D中畫出A、B關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)A2,B2(保留痕跡,不寫作法);并直接寫出A1、A2、B1、B2的坐標(biāo).
(2)試問(wèn):在x軸上是否存在一點(diǎn)C,使△A1B1C的周長(zhǎng)最小,若存在求C點(diǎn)的坐標(biāo),若不存在說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com