【題目】如圖,在和中,連接AC,BD交于點(diǎn)M,AC與OD相交于E,BD與OA相較于F,連接OM,則下列結(jié)論中:①;②;③;④MO平分,正確的個(gè)數(shù)有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
【答案】B
【解析】
由SAS證明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,①正確;
由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB=30°,②正確;
作OG⊥MC于G,OH⊥MB于H,則∠OGC=∠OHD=90°,由AAS證明△OCG≌△ODH,得出OG=OH,由角平分線的判定方法得出MO平分∠BMC,④正確;
由∠AOB=∠COD,得出當(dāng)∠DOM=∠AOM時(shí),OM才平分∠BOC,假設(shè)∠DOM=∠AOM,由△AOC≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA>OC,故③錯(cuò)誤;即可得出結(jié)論.
解:,
∴,
即,
在和中,,
,
,,①正確;
,
由三角形的外角性質(zhì)得:,
,②正確;
作于,于,如圖所示:
則,
在和中,,
,
,
平分,④正確;
∵∠AOB=∠COD,
∴當(dāng)∠DOM=∠AOM時(shí),OM才平分∠BOC,
假設(shè)∠DOM=∠AOM,
∵△AOC≌△BOD,
∴∠COM=∠BOM,
∵MO平分∠BMC,
∴∠CMO=∠BMO,
在△COM和△BOM中,,
∴△COM≌△BOM(ASA),
∴OB=OC,
∵OA=OB
∴OA=OC
與OA>OC矛盾,
∴③錯(cuò)誤;
正確的個(gè)數(shù)有3個(gè);
故選擇:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 y 與 x﹣2 成正比例,且當(dāng) x =﹣4 時(shí), y =﹣3.
(1)求 y 與 x 的函數(shù)關(guān)系式;
(2)若點(diǎn) M(5.1,m)、N(﹣3.9,n)在此函數(shù)圖像上,判斷 m 與 n 的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E、F、G、H分別為菱形ABCD四邊的中點(diǎn),AB=6cm,∠ABC=60°,則四邊形EFGH的面積為__cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)定義一種新運(yùn)算,規(guī)定: (其中均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如: .
(1)已知.
①求的值:
②若關(guān)于的不等式組無(wú)解,求實(shí)數(shù)的取值范圍.
(2)若對(duì)任意實(shí)數(shù)都成立(這里和均有意義),則應(yīng)滿足怎樣的關(guān)系式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線
若拋物線的對(duì)稱軸是直線,求的值.
若拋物線與軸負(fù)半軸交于兩個(gè)點(diǎn),且這兩點(diǎn)距離為,求的值.
若拋物線與軸交于,兩點(diǎn),與軸交點(diǎn)為,,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P為正方形ABCD的邊CD上一點(diǎn),BP的垂直平分線EF分別交BC、AD于E、F兩點(diǎn),GP⊥EP交AD于點(diǎn)G,連接BG交EF于點(diǎn) H,下列結(jié)論:①BP=EF;②∠FHG=45°;③以BA為半徑⊙B與GP相切;④若G為AD的中點(diǎn),則DP=2CP.其中正確結(jié)論的序號(hào)是( )
A. ①②③④ B. 只有①②③ C. 只有①②④ D. 只有①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AE是圓O的直徑,點(diǎn)B在AE的延長(zhǎng)線上,點(diǎn)D在圓O上,且AC⊥DC, AD平分∠EAC
(1)求證:BC是圓O的切線。
(2)若BE=8,BD=12,求圓O的半徑,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)同時(shí)挖掘兩段長(zhǎng)度相等的隧道,如圖是甲、乙兩隊(duì)挖掘隧道長(zhǎng)度(米)與挖掘時(shí)間(時(shí))之間關(guān)系的部分圖象.請(qǐng)解答下列問(wèn)題:
在前小時(shí)的挖掘中,甲隊(duì)的挖掘速度為 米/小時(shí),乙隊(duì)的挖掘速度為 米/小時(shí).
①當(dāng)時(shí),求出與之間的函數(shù)關(guān)系式;
②開(kāi)挖幾小時(shí)后,兩工程隊(duì)挖掘隧道長(zhǎng)度相差米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC(如圖),
(1)求作:作△ABC的內(nèi)切圓⊙I.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法,不要求證明).
(2)在題(1)已經(jīng)作好的圖中,若∠BAC=88°,求∠BIC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com