【題目】如圖,已知∠MON=30°,點A1 , A2 , A3 , …在射線ON上,點B1 , B2 , B3 , …在射線OM上,△A1B1A2 , △A2B2A3 , △A3B3A4 , …均為等邊三角形,若OA1=2,則△A5B5A6的邊長為 .
【答案】32
【解析】解:∵△A1B1A2是等邊三角形, ∴A1B1=A2B1 , ∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°﹣120°﹣30°=30°,
又∵∠3=60°,
∴∠5=180°﹣60°﹣30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=2,
∴A2B1=2,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3 , B1A2∥B2A3 ,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2 , B3A3=2B2A3 ,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此類推:A6B6=32B1A2=32.
故答案是:32.
根據(jù)等腰三角形的性質(zhì)以及平行線的性質(zhì)得出A1B1∥A2B2∥A3B3 , 以及A2B2=2B1A2 , 得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…進而得出答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖.△ABC中,AB=AC,AB的垂直平分線交AC于P點,若AB=6cm,BC=4cm,△PBC的周長等于( )
A.4cm
B.6cm
C.8cm
D.10cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△DEC中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是( )
A.BC=EC,∠B=∠E
B.BC=EC,AC=DC
C.BC=DC,∠A=∠D
D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD中,BC=3,點E、F分別是CB、CD延長線上的點,DF=BE,連接AE、AF,過點A作AH⊥ED于H點.
(1)求證:△ADF≌△ABE;
(2)若BE=1,求tan∠AED的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】順次連接一個四邊形的各邊中點,得到了一個矩形,則下列四邊形①平行四邊形;②菱形;③對角線互相垂直的四邊形;④對角線相等的四邊形,滿足條件的是( )
A.①③④
B.②③
C.①②④
D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了讓更多的失學兒童重返校園,某社區(qū)組織“獻愛心手拉手”捐款活動.對社區(qū)部分捐款戶數(shù)進行調(diào)查和分組統(tǒng)計后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計表和統(tǒng)計圖(圖中信息不完整).已知A、B兩組捐款戶數(shù)的比為1:5.
捐款戶數(shù)分組統(tǒng)計表
組別 | 捐款額(x)元 | 戶數(shù) |
A | 1≤x<50 | a |
B | 50≤x<100 | 10 |
C | 100≤x<150 | |
D | 150≤x<200 | |
E | x≥200 |
請結合以上信息解答下列問題.
(1)a= , 本次調(diào)查樣本的容量是;
(2)補全“捐款戶數(shù)分組統(tǒng)計表和捐款戶數(shù)分組統(tǒng)計圖1”;
(3)若該社區(qū)有1500戶住戶,請根據(jù)以上信息,估計全社區(qū)捐款不少于150元的戶數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】乘法公式的探究與應用:
(1)如圖甲,邊長為a的大正方形中有一個邊長為b的小正方形,請你寫出陰影部分面積是(寫成兩數(shù)平方差的形式)
(2)小穎將陰影部分裁下來,重新拼成一個長方形,如圖乙,則長方形的長是 , 寬是 , 面積是(寫成多項式乘法的形式).
(3)比較甲乙兩圖陰影部分的面積,可以得到公式(兩個) 公式1:
公式2:
(4)運用你所得到的公式計算:10.3×9.7.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在一個樣本中,50個數(shù)據(jù)分別落在5個組內(nèi),第一,二,三,四,五組數(shù)據(jù)的個數(shù)分別是2,8,15,20,5,則第四組頻數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com