【題目】如圖,在平面直角坐標系中.矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB.如果OA=3,OC=2,則經(jīng)過點E的反比例函數(shù)解析式為( )
A.
B.
C.
D.
【答案】A
【解析】解:∵BE∥AC,AE∥OB,
∴四邊形AEBD是平行四邊形,
∵四邊形OABC是矩形,
∴DA= AC,DB= OB,AC=OB,AB=OC=2,
∴DA=DB,
∴四邊形AEBD是菱形;
連接DE,交AB于F,如圖所示:
∵四邊形AEBD是菱形,
∴AB與DE互相垂直平分,
∵OA=3,OC=2,
∴EF=DF= OA= ,AF= AB=1,3+ = ,
∴點E坐標為:( ,1),
設(shè)經(jīng)過點E的反比例函數(shù)解析式為:y= ,
把點E代入得:k= ,
∴經(jīng)過點E的反比例函數(shù)解析式為:y= .
故選A.
連接DE,交AB于F,先證明四邊形AEBD是平行四邊形,再由矩形的性質(zhì)得出DA=DB,證出四邊形AEBD是菱形,由菱形的性質(zhì)得出AB與DE互相垂直平分,求出EF、AF,得出點E的坐標;設(shè)經(jīng)過點E的反比例函數(shù)解析式為:y= ,把點E坐標代入求出k的值即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(-3,0),B(0, ),點D與點A關(guān)于y軸對稱,C在第一象限內(nèi)且四邊形ABCD是平行四邊形.
(1)求點C、點D的坐標并用尺規(guī)作圖確定兩點位置(保留作圖痕跡)
(2)若半徑為1的⊙P從點A出發(fā),沿A—D—B—C以每秒4個單位長的速度勻速移動,同時⊙P的半徑以每秒0.5個單位長的速度增加,運動到點C時運動停止,當(dāng)運動時間為t秒時
①t為何值時,⊙P與y軸相切?
②在整個運動過程中⊙P與y軸有公共點的時間共有幾秒?簡述過程.
(3)若線段AB繞點O順時針旋轉(zhuǎn)90°,線段AB掃過的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】葡萄在銷售時,要求“葡萄”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍),如圖
(1)實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比, 取黃金比為0.6),體積為0.3立方米.
①按方案1(如圖)做一個紙箱,需要矩形硬紙板A1B1C1D1的面積是多少平方米?
②小明認為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板A2B2C2D2 做一個紙箱比方案1更優(yōu),你認為呢?請說明理由.
(2)拓展思維:水果商打算在產(chǎn)地購進一批“葡萄”,但他感覺(1)中的紙箱體積太大,搬運吃力,要求將紙箱的底面周長、底面面積和高都設(shè)計為原來的一半,你認為水果商的要求能辦到嗎?請利用函數(shù)圖象驗證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=12,點E為BC的中點.連接AE,將△ABE沿AE折疊,點B落在點F處,連接CF,現(xiàn)將△CEF繞點E順時針旋轉(zhuǎn)α角(其中0°≤α≤180°)得到△EC1F1 , 旋轉(zhuǎn)過程中,直線C1F1分別交射線EC、射線AE于點M、N,當(dāng)EM=EN時,則CM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ACB=90°,cosB=,BC=3,P是射線AB上的一個動點,以P為圓心,PA為半徑的⊙P與射線AC的另一個交點為D,直線PD交直線BC于點E.
(1)當(dāng)PA=1時,求CE的長;
(2)如果點P在邊AB的上,當(dāng)⊙P與以點C為圓心,CE為半徑的⊙C內(nèi)切時,求⊙P的半徑;
(3)設(shè)線段BE的中點為Q,射線PQ與⊙P相交于點F,點P在運動過程中,當(dāng)PE∥CF時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,點E,F(xiàn)分別在AB,CD上,∠ADE=∠CBF.
(1)求證:AE=CF;
(2)若DF=BF,求證:EF⊥BD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com