【題目】在ABCD中,點(diǎn)E,F(xiàn)分別在AB,CD上,∠ADE=∠CBF.
(1)求證:AE=CF;
(2)若DF=BF,求證:EF⊥BD.
【答案】
(1)證明:∵四邊形ABCD為平行四邊形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中, ,
∴△ADE≌△CBF(ASA),
∴AE=CF;
(2)證明:∵AE=CF,DF=BF,
∴DF=BE,∵DF∥BE,
∴四邊形DEBF是平行四邊形,
∴四邊形DEBF是菱形,
∴EF⊥BD.
【解析】(1)根據(jù)全等三角形的判定定理證明△ADE≌△CBF,即可證得結(jié)論;(2)證明四邊形DEBF是菱形,即可得出結(jié)論.
【考點(diǎn)精析】通過靈活運(yùn)用平行四邊形的性質(zhì),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中.矩形OABC的對(duì)角線OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB.如果OA=3,OC=2,則經(jīng)過點(diǎn)E的反比例函數(shù)解析式為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)y=﹣2(x﹣m)2的圖象,下列說法不正確的是( 。
A. 開口向下B. 對(duì)稱軸是x=mC. 最大值為0D. 與y軸不相交
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,M為邊AB上的點(diǎn),且AM= BM,延長(zhǎng)MB至點(diǎn)E,使ME=MC,連接EC,則點(diǎn)M到直線CE的距離是( )
A.2
B.
C.5
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把二次函數(shù)y=x2﹣2x+3配方成y=(x﹣m)2+k的形式,以下結(jié)果正確的是( )
A. y=﹣(x﹣1)2+4B. y=(x﹣1)2+2
C. y=(x+1)2+2D. y=(x﹣2)2+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人共同解方程組 , 由于甲看錯(cuò)了方程①中的a,得到方程組的解為;乙看錯(cuò)了方程②中的b,得到方程組的解為 , 試計(jì)算a2012+(b)2013的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為4cm的等邊三角形,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿A→C→B運(yùn)動(dòng),到達(dá)B點(diǎn)即停止運(yùn)動(dòng),PD⊥AB交AB于點(diǎn)D.設(shè)運(yùn)動(dòng)時(shí)間為x(s),△ADP的面積為y(cm2),則y與x的函數(shù)圖象正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列表格是二次函數(shù)y=ax2+bx+c(d≠0)的自變量x與函數(shù)y的一些對(duì)應(yīng)值,由此可以判斷方程ax2+bx+c=0(a≠0)的一個(gè)根在( )
x | 6.17 | 6.18 | 6.19 | 6.20 |
y=ax2+bx+c | ﹣0.03 | ﹣0.01 | 0.02 | 0.06 |
A.﹣0.01﹣0.02之間
B.0.02﹣0.06之間
C.6.17﹣6.18之間
D.6.18﹣6.19之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(3,3)和點(diǎn)B是平面內(nèi)兩點(diǎn),且它們關(guān)于直線x=2軸對(duì)稱,則點(diǎn)B的坐標(biāo)為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com