【題目】(本小題滿分12分)如圖,在平面直角坐標系中矩形ABCOOA邊在軸上,OC邊在軸上,B點坐標為(4,3).動點M、N分別從點O、B同時出發(fā),1單位/秒的速度運動(點M沿OA向終點A運動,N沿BC向終點C運動),過點NNPABAC于點P,連結(jié)MP

1直接寫出OA、AB的長度;

2試說明CPNCAB

3在兩點的運動過程中,請求出ΔMPA的面積S與運動時間的函數(shù)關(guān)系式

4在運動過程中,MPA的面積S是否存在最大值?若存在,請求出當為何值時有最大值,并求出最大值若不存在,請說明理由

【答案】1OA=4,AB=3;(2證明見解析;(3;(4存在,當=2時有最大值,最大值為

【解析】試題分析:(1)由矩形的性質(zhì),以及B點坐標為(4,3),可直接的出OA、AB的長度;

2)根據(jù)過點NNPABAC于點P,直接可得出三角形相似;

3)用t表示出P點的坐標,可以得出S的關(guān)系式;

4)利用公式可直接得出當t==2時,二次函數(shù)有最大值

試題解析:解:(1矩形ABCOOA邊在x 軸上,OC邊在y軸上,且B點坐標為(4,3),OA=4,AB=3;

2NPAB∴△CPN∽△CAB;

3P點的橫坐標是4t,求出CA的直線為,代入P的橫坐標得到P的縱坐標, ,所以P的坐標為(4t, ),SMPA=MA×yP÷2= ×4t×= ,t≤4

4)由S關(guān)于t的函數(shù),當t==2時,二次函數(shù)有最大值=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某地某天最高氣溫是33 ℃,最低氣溫是22 ℃,則當天該地氣溫t(℃)的變化范圍可用不等式表示為( )

A. t≥22 B. t≤22 C. 22<t<33 D. 22≤t≤33

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(a,-6)關(guān)于x軸的對稱點的坐標為(

A. (a, 6)B. (a, 6)C. (a, 6)D. (a 6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,破殘的圓形輪片上,AB的垂直平分線交弧AB于點C,交弦AB于點D.已知AB=24cm,CD=8cm

1)求作此殘片所在的圓(不寫作法保留作圖痕跡)

2)求殘片所在圓的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分8分)如圖,四邊形ABCD、DEFG都是正方形,連接AE、CG、AECG相交于點MCGAD相交于點N

求證:(1)AE=CG;

(2)ANDN=CNMN

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個過程中,__________的量稱為常量,可以取__________的量稱為變量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,⊙O的半徑為rr0),若點P′在射線OP上,滿足OP′OP=r2,則稱點P′是點P關(guān)于⊙O反演點

如圖2,⊙O的半徑為4,點B⊙O上,∠BOA=60°,OA=8,若點A′,B′分別是點A,B關(guān)于⊙O的反演點,求A′B′的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一坐標系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線的函數(shù)表達式為,它與軸、軸的交點分別為A、B兩點.

(1)求點A、B的坐標;

(2)設(shè)F是軸上一動點,⊙P經(jīng)過點B且與軸相切于點F,設(shè)⊙P的圓心坐標為P(x,y),求y與之間的函數(shù)關(guān)系;

(3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點B?若存在,求出圓心P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案