精英家教網 > 初中數學 > 題目詳情

【題目】當m為何值時,關于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0.
(1)有兩個不相等的實數根;
(2)有兩個相等的實數根;
(3)沒有實數根.

【答案】
(1)解:(2m+1)x2+4mx+2m﹣3=0,

△=(4m)2﹣4(2m+1)(2m﹣3)=16m+12,

2m+1≠0時,m≠﹣

當△>0時,有兩個不相等的實數根,即當m>﹣ 且m≠﹣ 時,方程有兩個不相等的實數根


(2)解:當△=0時,有兩個不相等的實數根,即當m=﹣ 時,方程有兩個相等的實數根
(3)解:當△<0時,沒有實數根,即當m<﹣ 時,方程沒有實數根
【解析】先求出△的值,再根據根的判別式的內容判斷即可.
【考點精析】掌握求根公式是解答本題的根本,需要知道根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數根2、當△=0時,一元二次方程有2個相同的實數根3、當△<0時,一元二次方程沒有實數根.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】一位射擊運動員在10次射擊訓練中,命中靶的環(huán)數如圖. 請你根據圖表,完成下列問題:

(1)補充完成下面成績表單的填寫:

射擊序次

1

2

3

4

5

6

7

8

9

10

成績/環(huán)

8

10

7

9

10

7

10


(2)求該運動員這10次射擊訓練的平均成績.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知A=3a2b2ab2+abc,小明同學錯將“2A﹣B“看成”2A+B“,算得結果為4a2b3ab2+4abc

(1)計算B的表達式;

(2)求出2AB的結果;

(3)小強同學說(2)中的結果的大小與c的取值無關,對嗎?若a=,b=

(2)中式子的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數圖象如圖所示,根據圖象可得:

(1)拋物線頂點坐標;
(2)對稱軸為
(3)當x=時,y有最大值是
(4)當時,y隨著x得增大而增大.
(5)當時,y>0.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:二次函數y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.

(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)若拋物線上有一動點P,使三角形ABP的面積為6,求P點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,左面的幾何體叫三棱柱,它有五個面,條棱,個頂點,中間和右邊的幾何體分別是四棱柱和五棱柱.

四棱柱有________個頂點,________條棱,________個面;

五棱柱有________個頂點,________條棱,________個面;

你能由此猜出,六棱柱、七棱柱各有幾個頂點,幾條棱,幾個面嗎?

棱柱有幾個頂點,幾條棱,幾個面嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:

(1)﹣12+15﹣|﹣7﹣8|

(2)(﹣3)×(﹣9)﹣(﹣5)

(3)

(4)

化簡:(5)

(6)7a+3(a-3b)-2(b-3a)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將等邊△ABD沿BD中點旋轉180°得到△BDC.現給出下列命題:
①四邊形ABCD是菱形;
②四邊形ABCD是中心對稱圖形;
③四邊形ABCD是軸對稱圖形;
④AC=BD.
其中正確的是(寫上正確的序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,對稱軸為直線x=﹣1,與x軸的一個交點為(1,0),與y軸的交點為(0,3),則方程ax2+bx+c=0(a≠0)的解為(

A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4

查看答案和解析>>

同步練習冊答案