【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)為(0,3),則方程ax2+bx+c=0(a≠0)的解為( )
A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4
【答案】C
【解析】解:∵拋物線的對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)為(1,0),
∴拋物線與x軸另一個(gè)交點(diǎn)坐標(biāo)為(﹣3,0).
∴ax2+bx+c=0(a≠0)的解為x1=1,x2=﹣3.
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí),掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)m為何值時(shí),關(guān)于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0.
(1)有兩個(gè)不相等的實(shí)數(shù)根;
(2)有兩個(gè)相等的實(shí)數(shù)根;
(3)沒(méi)有實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】百貨商店服裝專柜在銷售中發(fā)現(xiàn):某商品的進(jìn)價(jià)為每件40元.當(dāng)售價(jià)為每件60元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣出20件.為占有市場(chǎng)份額,在確保盈利的前提下.
(1)降價(jià)多少元時(shí),每星期盈利為6125元.
(2)降價(jià)多少元時(shí),每星期盈利額最大,最大盈利額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,有一座拱橋圓弧形,它的跨度AB為60米,拱高PM為18米,當(dāng)洪水泛濫到跨度只有30米時(shí),就要采取緊急措施,若拱頂離水面只有4米,即PN=4米時(shí),是否采取緊急措施?( =1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)為(0,3),則方程ax2+bx+c=0(a≠0)的解為( )
A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,BC=AC,∠C=90°,直角頂點(diǎn)C在x軸上,一銳角頂點(diǎn)B在y軸上.
(1)如圖①若AD于垂直x軸,垂足為點(diǎn)D.點(diǎn)C坐標(biāo)是(﹣1,0),點(diǎn)A的坐標(biāo)是(﹣3,1),求點(diǎn)B的坐標(biāo).
(2)如圖②,直角邊BC在兩坐標(biāo)軸上滑動(dòng),若y軸恰好平分∠ABC,AC與y軸交于點(diǎn)D,過(guò)點(diǎn)A作AE⊥y軸于E,請(qǐng)猜想BD與AE有怎樣的數(shù)量關(guān)系,并證明你的猜想.
(3)如圖③,直角邊BC在兩坐標(biāo)軸上滑動(dòng),使點(diǎn)A在第四象限內(nèi),過(guò)A點(diǎn)作AF⊥y軸于F,在滑動(dòng)的過(guò)程中,請(qǐng)猜想OC,AF,OB之間有怎樣的關(guān)系(直接寫出結(jié)論,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】未成年人思想道德建設(shè)越來(lái)越受到社會(huì)的關(guān)注,遼陽(yáng)青少年研究所隨機(jī)調(diào)查了本市一中學(xué)100名學(xué)生寒假中花零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費(fèi)觀.根據(jù)調(diào)查數(shù)據(jù)制成了頻
分組 | 頻數(shù) | 頻率 |
0.5~50.5 |
| 0.1 |
50.5~ | 20 | 0.2 |
100.5~150.5 |
|
|
200.5 | 30 | 0.3 |
200.5~250.5 | 10 | 0.1 |
率分布表和頻率分布直方圖(如圖).
(1)補(bǔ)全頻率分布表;
(2)在頻率分布直方圖中,長(zhǎng)方形ABCD的面積是 ;這次調(diào)查的樣本容量是 ;
(3)研究所認(rèn)為,應(yīng)對(duì)消費(fèi)150元以上的學(xué)生提出勤儉節(jié)約的建議.試估計(jì)應(yīng)對(duì)該校1000名學(xué)生中約多少名學(xué)生提出這項(xiàng)建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀資料:
如圖1,在平面直角坐標(biāo)系xOy中,A,B兩點(diǎn)的坐標(biāo)分別為A(x1 , y1),B(x2 , y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 , 所以A,B兩點(diǎn)間的距離為AB= .
我們知道,圓可以看成到圓心的距離等于半徑的點(diǎn)的集合,如圖2,在平面直角坐標(biāo)系xOy中,A (x,y)為圓上任意一點(diǎn),則點(diǎn)A到原點(diǎn)的距離的平方為OA2=|x﹣0|2+|y﹣0|2 , 當(dāng)⊙O的半徑OA為r時(shí),⊙O的方程可寫為:x2+y2=r2 .
問(wèn)題拓展:
如果圓心坐標(biāo)為P (a,b),半徑為r,那么⊙P的方程可以寫為。▁﹣a)2+(y﹣b)2=r2 .
綜合應(yīng)用:
如圖3,⊙P與x軸相切于原點(diǎn)O,P點(diǎn)坐標(biāo)為(0,6),A是⊙P上一點(diǎn),連接OA,使∠POA=30°,作PD⊥OA,垂足為D,延長(zhǎng)PD交x軸于點(diǎn)B,連接AB.
①證明AB是⊙P的切線;
②是否存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q?若存在,求Q點(diǎn)坐標(biāo),并寫出以點(diǎn)Q為圓心,OQ長(zhǎng)為半徑的⊙Q的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,E、F分別在邊AB、CD上,EF∥BC,AE:BE=1:2,對(duì)角線AC交EF于G,若BC=10cm,AD=6cm,則EF的長(zhǎng)等于______ cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com