如圖,將一張矩形紙片ABCD沿直線MN折疊,使點(diǎn)C落在點(diǎn)A處,點(diǎn)D落在點(diǎn)E處,直線MN交BC于點(diǎn)M,交AD于點(diǎn)N.
(1)求證:CM=CN;
(2)若△CMN的面積與△CDN的面積比為3:1,且CD=4,求線段MN的長.
(1)證明見解析;(2).
【解析】
試題分析:(1)由折疊的性質(zhì)可得:∠ANM=∠CNM,由四邊形ABCD是矩形,可得∠ANM=∠CMN,則可證得∠CMN=∠CNM,繼而可得CM=CN.
(2)首先過點(diǎn)N作NH⊥BC于點(diǎn)H,由△CMN的面積與△CDN的面積比為3:1,易得MC=3ND=3HC,然后設(shè)DN=x,由勾股定理,可求得MN的長.
(1)由折疊的性質(zhì)可得:∠ANM=∠CNM .
∵ 四邊形ABCD是矩形,
∴ AD∥BC .
∴ ∠ANM=∠CMN .
∴ ∠CMN=∠CNM .
∴ CM=CN.
(2)如圖,過點(diǎn)N作NH⊥BC于點(diǎn)H,則四邊形NHCD是矩形.
∴HC=DN,NH=DC.
∵ △CMN的面積與△CDN的面積比為3:1,
∴ MC=3ND=3HC.
∴ MH=2HC.
設(shè)DN=x,則HC=x,MH=2x,
∴CM=3x=CN.
在Rt△CDN中,DC=2x=4,
∴.
∴HM=2.
在Rt△MNH中,MN=.
考點(diǎn):1.翻折變換(折疊問題);2.矩形的性質(zhì);3.等腰三角形的判定;4.三角形的面積;5.勾股定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014年北京市密云縣中考一模數(shù)學(xué)試卷(解析版) 題型:解答題
已知拋物線,
(1)若求該拋物線與x軸的交點(diǎn)坐標(biāo);
(2)若 ,證明拋物線與x軸有兩個交點(diǎn);
(3)若且拋物線在區(qū)間上的最小值是-3,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市密云縣中考一模數(shù)學(xué)試卷(解析版) 題型:選擇題
某中學(xué)書法興趣小組12名成員的年齡情況如下:
年齡(歲) | 12 | 13 | 14 | 15 | 16 |
人數(shù) | 1 | 4 | 3 | 2 | 2 |
則這個小組成員年齡的眾數(shù)和中位數(shù)分別是( )
A.15,16 B.13,14 C.13,15 D.14,14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市東城區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1,已知∠DAC=90°,△ABC是等邊三角形,點(diǎn)P為射線AD上任意一點(diǎn)(點(diǎn)P與點(diǎn)A不重合),連結(jié)CP,將線段CP繞點(diǎn)C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點(diǎn)E.
(1)如圖1,猜想∠QEP= °;
(2)如圖2,3,若當(dāng)∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;
(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市東城區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:選擇題
若二次函數(shù)y=x2﹣2x+c的圖象與y軸的交點(diǎn)為(0,﹣3),則此二次函數(shù)有( )
A.最小值為-2 B.最小值為-3 C.最小值為-4 D.最大值為-4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014屆重慶一中七年級上期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
甲、乙、丙三人分別拿出相同數(shù)量的錢,合伙訂購某種商品若干件.商品買來后,甲、乙分別比丙多拿了7、11件,最后結(jié)算時,三人要求按所得商品的實(shí)際數(shù)量付錢,進(jìn)行多退少補(bǔ).已知甲要付給丙14元, 那么乙還應(yīng)付給丙 元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014屆山東省泰安市泰山區(qū)初三下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題
用配方法解一元二次方程x2+4x﹣5=0,此方程可變形為( )
A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com