【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)A且與x軸平行的直線交拋物線yx+12B,C兩點(diǎn),若線段BC的長為6,則點(diǎn)A的坐標(biāo)為( 。

A.0,1B.0,4.5C.0,3D.0,6

【答案】C

【解析】

設(shè)A0,b),Bx1,b),Cx2,b),把y=b代入y=x+12得,x2+2x+1-3b=0,然后根據(jù)根與系數(shù)的關(guān)系,得出(-22-41-3b=36,解得即可.

設(shè)A0,b),Bx1,b),Cx2,b),

yb代入yx+12得,x2+2x+13b0,

x1+x2=﹣2x1x213b,

BC6,

x2x16,

∴(x1+x224x1x236,

∴(﹣22413b)=36,

解得b3,

A03

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線交于A、B兩點(diǎn),連接OA、OB,軸于點(diǎn)M,軸于點(diǎn)N,有以下結(jié)論:①;②;③;④當(dāng)時,.其中結(jié)論正確的是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠ACB=90°AB=8,點(diǎn)EAB的中點(diǎn),以AE為邊作等邊ADE(點(diǎn)D與點(diǎn)C分別在AB異側(cè)),連接CD,則ACD的面積是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】茶葉是安徽省主要經(jīng)濟(jì)作物之一,2020年新茶上市期間,某茶廠為獲得最大利益,根據(jù)市場行情,把新茶價格定為400/kg,并根據(jù)歷年的相關(guān)數(shù)據(jù)整理出第x天(1x15,且x為整數(shù))制茶成本(含采摘和加工)和制茶量的相關(guān)信息如下表.假定該茶廠每天制作和銷售的新茶沒有損失,且能在當(dāng)天全部售出(當(dāng)天收入=日銷售額-日制茶成本)

制茶成本(元/kg

150+10x

制茶量(kg

40+4x

1)求出該茶廠第10天的收入;

2)設(shè)該茶廠第x天的收入為y(元).試求出yx之間的函數(shù)關(guān)系式,并求出y的最大值及此時x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)(頂點(diǎn)是網(wǎng)格線的交點(diǎn))和直線l及點(diǎn)O.

1)畫出關(guān)于直線l對稱的

2)連接OA,將OA繞點(diǎn)O順時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后的線段;

3)在旋轉(zhuǎn)過程中,當(dāng)OA有交點(diǎn)時,旋轉(zhuǎn)角的取值范圍為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖所示直線y=kx+2(k0)與反比例函數(shù)y=(m0)分別交于點(diǎn)P,與y軸、x軸分別交于點(diǎn)A和點(diǎn)B,且cosABO=,過P點(diǎn)作x軸的垂線交于點(diǎn)C,連接AC,

(1)求一次函數(shù)的解析式.

(2)若AC是△PCB的中線,求反比例函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖等邊的邊長為,點(diǎn),點(diǎn)同時從點(diǎn)出發(fā),點(diǎn)沿的速度向點(diǎn)運(yùn)動,點(diǎn)沿的速度也向點(diǎn)運(yùn)動,直到到達(dá)點(diǎn)時兩點(diǎn)都停止運(yùn)動,若的面積為,點(diǎn)的運(yùn)動時間為,則下列最能反映之間函數(shù)關(guān)系的圖象是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級學(xué)生的體質(zhì)健康狀況,隨機(jī)抽取了該校九年級學(xué)生的10%進(jìn)行測試,將這些學(xué)生的測試成績(x)分為四個等級:優(yōu)秀;良好;及格;不及格,并繪制成以下兩幅統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問題:

1)在抽取的學(xué)生中不及格人數(shù)所占的百分比是______;

2)計(jì)算所抽取學(xué)生測試成績的平均分;

3)若不及格學(xué)生的人數(shù)為2人,請估算出該校九年級學(xué)生中優(yōu)秀等級的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水城門位于淀浦河和漕港河三叉口,是環(huán)城水系公園淀浦河夢蝶島區(qū)域重要的標(biāo)志性景觀.在課外實(shí)踐活動中,某校九年級數(shù)學(xué)興趣小組決定測量該水城門的高.他們的操作方法如下:如圖,先在D處測得點(diǎn)A的仰角為20°,再往水城門的方向前進(jìn)13米至C處,測得點(diǎn)A的仰角為31°(點(diǎn)D、C、B在一直線上),求該水城門AB的高.(精確到0.1米)

(參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60

查看答案和解析>>

同步練習(xí)冊答案