【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點.
(1)求拋物線的解析式和頂點坐標(biāo);
(2)當(dāng)0<x<3時,求y的取值范圍;
【答案】(1) y=x2﹣2x﹣3,頂點坐標(biāo)為(1,﹣4).(2) ﹣4≤y<0.
【解析】
試題(1)由點A、B的坐標(biāo)利用待定系數(shù)法即可求出拋物線的解析式,再利用配方法即可求出拋物線頂點坐標(biāo);
(2)結(jié)合函數(shù)圖象以及A、B點的坐標(biāo)即可得出結(jié)論.
試題解析::(1)把A(-1,0)、B(3,0)分別代入y=x2+bx+c中,
得:,
解得: ,
∴拋物線的解析式為y=x2-2x-3.
∵y=x2-2x-3=(x-1)2-4,
∴頂點坐標(biāo)為(1,-4).
(2)由圖可得當(dāng)0<x<3時,-4<y<0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N再分別以MN為圓心,大于的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法中正確的有________.
①AD是的平分線;②;③點D在AB的中垂線上;④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=60°,∠BAC=75°,AD,CF分別是BC、AB邊上的高且相交于點P,∠ABC的平分線BE分別交AD、CF于M、N.以下四個結(jié)論:①△PMN等邊三角形;②除了△PMN外,還有4個等腰三角形;③△ABD≌△CPD;④當(dāng)DM=2時,則DC=6.其中正確的結(jié)論是:_____(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF.
(1)求證:BE=BF;
(2)若∠ABE=20°,求∠BFE的度數(shù);
(3)若AB=6,AD=8,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax+bx+c(a≠0)的圖像,下列說法錯誤的是( )
A. 函數(shù)y的最大值是4 B. 函數(shù)的圖象關(guān)于直線x=1對稱
C. 當(dāng)x<-1時,y隨x的增大而增大 D. 當(dāng)-4<x<1時,函數(shù)值y>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華商場為迎接家電下鄉(xiāng)活動銷售某種冰箱,每臺進價為2500元,市場調(diào)研表明;當(dāng)銷售價定為2900元時,平均每天能售出8臺;而當(dāng)銷售價每降低50元時,平均每天就能多售出4臺,商場要想使這種冰箱的銷售利潤平均每天達(dá)到5000元,每臺冰箱的定價應(yīng)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC的平分線與線段BC的垂直平分線PQ相交于點P,過點P分別作PN垂直于AB于點N,PM垂直于AC于點M,BN和CM有什么數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著城際鐵路的正式開通,從甲市經(jīng)丙市到乙市的高鐵里程比普快里程縮短了90km,運行時間減少了8h,已知甲市到乙市的普快列車?yán)锍虨?/span>1220km.高鐵平均時速是普快平均時速的2.5倍.
(1)求高鐵列車的平均時速;
(2)某日王先生要從甲市去距離大約780km的丙市參加14:00召開的會議,如果他買到當(dāng)日9:20從甲市到丙市的高鐵票,而且從丙市火車站到會議地點最多需要1小時.試問在高鐵列車準(zhǔn)點到達(dá)的情況下,它能否在開會之前20分鐘趕到會議地點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. 對載人航天器“神舟十號”的零部件的檢查適合采用抽樣調(diào)查的方式
B. 某市天氣預(yù)報中說“明天降雨的概率是80%”,表示明天該市有80%的地區(qū)降雨
C. 擲一枚硬幣,正面朝上的概率為
D. 若S2甲=0.1, S2乙=0.01,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com