【題目】已知直線(xiàn)與雙曲線(xiàn)交于兩點(diǎn),過(guò)軸于點(diǎn),過(guò)軸于點(diǎn),連接

(Ⅰ)求兩點(diǎn)的坐標(biāo);

(Ⅱ)試探究直線(xiàn)的位置關(guān)系并說(shuō)明理由.

(Ⅲ)已知點(diǎn),且,在拋物線(xiàn)上,若當(dāng)(其中)時(shí),函數(shù)的最小值為,最大值為,求的值.

【答案】(Ⅰ)若,則,,若,則;(Ⅱ),理由見(jiàn)解析;(Ⅲ)的值為

【解析】

(Ⅰ)把直線(xiàn)yxt與雙曲線(xiàn)的解析式聯(lián)立成方程組,解方程組即可求出交點(diǎn)坐標(biāo),即C、D兩點(diǎn)的坐標(biāo);

(Ⅱ)位置關(guān)系是:平行,求出直線(xiàn)AB的解析式,與直線(xiàn)CD的解析式yxt比較,k相等說(shuō)明兩直線(xiàn)平行;

(Ⅲ)先求出C點(diǎn)坐標(biāo),再利用待定系數(shù)法求出拋物線(xiàn)的解析式,最后通過(guò)分類(lèi)討論:①當(dāng)時(shí),②當(dāng),③當(dāng),分別根據(jù)函數(shù)的最小值為,最大值為,結(jié)合二次函數(shù)的性質(zhì)列出方程,得出m,n的值.

解:(Ⅰ)聯(lián)立,解得:

設(shè),,

,則,

,則,

(Ⅱ),

理由:不妨設(shè)

由(1)知 ,

,

設(shè)直線(xiàn)的解析式為,

則將,兩點(diǎn)坐標(biāo)代入有:,,

∴直線(xiàn)的解析式為:,

∴直線(xiàn)的位置關(guān)系是;

(Ⅲ)將代入雙曲線(xiàn),

代入直線(xiàn),得,

,

∴由(Ⅰ)知,

,

,在拋物線(xiàn)上,

,解得

,

,可知,,

①當(dāng)時(shí),由函數(shù)的最小值為,最大值為,可知,

,即為一元二次方程的兩解,即

,

,

又∵,

∴此情況不合題意;

②當(dāng),即時(shí),

由函數(shù)的最小值為,最大值為,可知

解得:,

此時(shí),即,符合題意,

;

③當(dāng),即時(shí),

由函數(shù)的最小值為,最大值為,可知

解得:,

,

∴此情況不合題意,

綜上所述,滿(mǎn)足題意的的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是等邊三角形內(nèi)一點(diǎn),繞點(diǎn) .按順時(shí)針?lè)较蛐D(zhuǎn), 連接.

1)求證:是等邊三角形;

2)當(dāng)時(shí), 試判斷的形狀,并說(shuō)明理由;

3)探究:當(dāng)為多少度時(shí),是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),頂點(diǎn)為A,且經(jīng)過(guò)點(diǎn),點(diǎn)

1)求拋物線(xiàn)的解析式;

2)如圖1,直線(xiàn)ABx軸相交于點(diǎn)M,y軸相交于點(diǎn)E,拋物線(xiàn)與y軸相交于點(diǎn)F,在直線(xiàn)AB上有一點(diǎn)P,若∠OPM=∠MAF,求△POE的面積;

3)如圖2,點(diǎn)Q是折線(xiàn)ABC上一點(diǎn),過(guò)點(diǎn)QQNy軸,過(guò)點(diǎn)EENx軸,直線(xiàn)QN與直線(xiàn)EN相交于點(diǎn)N,連接QE,將△QEN沿QE翻折得到△QEN1,若點(diǎn)N1落在x軸上,請(qǐng)直接寫(xiě)出Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司共有三個(gè)部門(mén),根據(jù)每個(gè)部門(mén)的員工人數(shù)和相應(yīng)每人所創(chuàng)的年利潤(rùn)繪制成如下的統(tǒng)計(jì)表和扇形圖.

各部門(mén)人數(shù)及每人所創(chuàng)年利潤(rùn)統(tǒng)計(jì)表

部門(mén)

員工人數(shù)

每人所創(chuàng)的年利潤(rùn)/萬(wàn)元

A

5

10

B

8

C

5

(1)在扇形圖中,C部門(mén)所對(duì)應(yīng)的圓心角的度數(shù)為_(kāi)__________;

在統(tǒng)計(jì)表中,___________,___________;

(2)求這個(gè)公司平均每人所創(chuàng)年利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)yax2+bx+cx軸交于點(diǎn)A(10),頂點(diǎn)坐標(biāo)是(1n),與y軸的交點(diǎn)在(0,3)(0,6)之間(包含端點(diǎn)),則下列結(jié)論錯(cuò)誤的是( )

A.3a+b0B.2≤a≤lC.abc0D.9a+3b+2c0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2013年四川綿陽(yáng)12分)如圖,已知矩形OABC中,OA=2,AB=4,雙曲線(xiàn)k0)與矩形兩邊AB、BC分別交于E、F

1)若EAB的中點(diǎn),求F點(diǎn)的坐標(biāo);

2)若將△BEF沿直線(xiàn)EF對(duì)折,B點(diǎn)落在x軸上的D點(diǎn),作EG⊥OC,垂足為G,證明△EGD∽△DCF,并求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD為正方形,點(diǎn)A的坐標(biāo)為(0,3),點(diǎn)B的坐標(biāo)為(0,﹣4),反比例﹣函數(shù)yk0)的圖象經(jīng)過(guò)點(diǎn)C

1)求反比例函數(shù)的解析式;

2)點(diǎn)P是反比例函數(shù)在第二象限的圖象上的一點(diǎn),若△PBC的面積等于正方形ABCD的面積,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(3分)如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng)設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是(

A B C D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“機(jī)動(dòng)車(chē)行駛到斑馬線(xiàn)要禮讓行人”等交通法規(guī)實(shí)施后,某校共有3000人,數(shù)學(xué)課外實(shí)踐小組就對(duì)這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實(shí)踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:

1)扇形統(tǒng)計(jì)圖中C所對(duì)應(yīng)的扇形圓心角度數(shù)為   ;估計(jì)全校非常了解交通法規(guī)的有   人.

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機(jī)抽取兩名學(xué)生參加市區(qū)交通法規(guī)競(jìng)賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求丙和丁兩名同學(xué)同事被選中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案