寫出方程組
|x-1|-y=-1
|x+1|+|y|=5
的所有解:
 
考點(diǎn):解二元一次方程組
專題:
分析:先由第一個(gè)方程整理得到y(tǒng)=|x-1|+1,根據(jù)絕對(duì)值的性質(zhì)判斷出y是正數(shù),然后整理第二個(gè)方程并利用代入消元法得到關(guān)于x的絕對(duì)值方程,根據(jù)數(shù)軸的知識(shí)去掉絕對(duì)值號(hào),然后求出x的值,再代入求出y的值即可得解.
解答:解:
|x-1|-y=-1①
|x+1|+|y|=5②
,
由①得,y=|x-1|+1③,
∴y≥1,
∴方程②可化為|x+1|+y=5④,
③代入④得,|x+1|+|x-1|=4,
由數(shù)軸的知識(shí)可知x<-1或x>1,
x<-1時(shí),-(x+1)-(x-1)=4,
解得x=-2,
y=|-2-1|+1=4,
x>1時(shí),x+1+x-1=4,
解得x=2,
y=|2-1|+1=2,
所以,方程組的解是
x=-2
y=4
,
x=2
y=2

故答案為:
x=-2
y=4
,
x=2
y=2
點(diǎn)評(píng):本題考查了解二元一次方程組,根據(jù)絕對(duì)值的性質(zhì)判斷出y是大于等于1的正數(shù)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

“當(dāng)室溫低于-5℃時(shí),盆內(nèi)的水結(jié)成冰”這一事件是
 
事件(選填“必然”、“不可能”、“隨機(jī)”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,A、B、C三點(diǎn)的坐標(biāo)分別為A(-5,O)、B(5,0)、C(0,12).
(1)若△ABC內(nèi)心為D.求點(diǎn)D坐標(biāo)為
 
;
(2)若稱與三角形的一邊和其他兩邊的延長(zhǎng)線相切的圓,叫旁切圓,圓心叫旁心,則與AC延長(zhǎng)線相切的旁切圓圓心坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=
2
-1,b=-32,c=-|-
2
|,比較a,b,c的大。ㄓ谩埃肌边B接)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一元二次方程x(x-1)+5(x-1)=0的解是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:數(shù)軸上的點(diǎn)A和點(diǎn)B之間的整數(shù)點(diǎn)有
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某市場(chǎng)銷售一批名牌襯衫,平均每天可銷售20件,每件贏利40元.為了擴(kuò)大銷售,增加贏利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)降價(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出2件.(1)求:若商場(chǎng)平均每天要贏利1200元,且讓顧客感到實(shí)惠,每件襯衫應(yīng)降價(jià)多少元?(2)商場(chǎng)平均每天贏利能否達(dá)到1400元?如能應(yīng)降價(jià)多少元?如不能請(qǐng)說(shuō)明理由.
(1)解:設(shè)每件襯衫應(yīng)降價(jià)x元
完成表格:
每天售出件數(shù)(件) 每件贏利(元) 每天贏利(元)
降價(jià)前
 
 
800
降價(jià)后
 
 
1200
由題意得方程
 

解這個(gè)方程得:x1=
 
,x2=
 

檢驗(yàn):
 

答:
 

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

百貨大摟服裝柜在銷售中發(fā)現(xiàn):“七彩”牌童裝平均每天可售出20件,每件盈利40元.為了迎接“國(guó)慶”,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,減少庫(kù)存.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)0.5元,那么平均每天就可多售出1件.
(1)如果每件童裝降價(jià)5元,那么平均每天可售出
 
件.
(2)要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?
(3)用配方法說(shuō)明:要想盈利最多,每件童裝應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

求出3x2-27=0中x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案