拋物線y=ax2+bx+c經(jīng)過點O(0,0),A(4,0),B(2,2).
(1)求該拋物線的解析式;
(2)畫出此拋物線的草圖;
(3)求證:△AOB是等腰直角三角形;
(4)將△AOB繞點O按順時針方向旋轉(zhuǎn)135°得△OA'B',寫出邊A'B'的中點P的坐標,試判定點P是否在此拋物線上,并說明理由.

解:(1)由題意可得
解得


(2)如圖.

(3)如圖,直線BC為拋物線的對稱軸,
∴BC⊥x軸于點C,
在Rt△BOC中:OC=BC=2,∴
同理可得,
∵AB2+OB2=16=OA2,
∴△OAB為等腰直角三角形.

(4)旋轉(zhuǎn)135°后點B'落在y軸上,如圖,
則A'B'⊥x軸,∴
∵點P為A'B'的中點,
∴點P坐標為

∴點P不在此拋物線上.
答:點P不在此拋物線上.
分析:(1)利用O、A、B三點,把三點代入函數(shù)解析式,解出系數(shù),確定出函數(shù)解析式.
(2)利用函數(shù)解析式繪出圖象.
(3)利用兩點之間的距離公式確定出OB、AB的值,驗證他們是否相等.
(4)畫出將△AOB繞點O按順時針方向旋轉(zhuǎn)135°得△OA'B'的圖象,利用圖象求解.
點評:本題主要考查了二次函數(shù)解析式系數(shù)的確定,以及二次函數(shù)圖象的相關知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知點(2,8)在拋物線y=ax2上,則a的值為( 。
A、±2
B、±2
2
C、2
D、-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸的負半軸相交于D.
(1)若拋物線y=ax2+bx+c經(jīng)過B、C、D三點,求此拋物線的解析式,并寫出拋物線與圓A的另一個交點E的坐標;
(2)若動直線MN(MN∥x軸)從點D開始,以每秒1個長度單位的速度沿y軸的正方向移動,且與線段CD、y軸分別交于M、N兩點,動點P同時從點C出發(fā),在線段OC上以每秒2個長度單位的速度向原點O運動,連接PM,設運動時間為t秒,當t為何值時,
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的條件下,若以P、C、M為頂點的三角形與△OCD相似,求實數(shù)t的值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若(2,0)、(4,0)是拋物線y=ax2+bx+c上的兩個點,則它的對稱軸是直線(  )
A、x=0B、x=1C、x=2D、x=3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標平面內(nèi),O為原點,拋物線y=ax2+bx經(jīng)過點A(6,0),且頂點B(m,6)在直線y=2x上.
(1)求m的值和拋物線y=ax2+bx的解析式;
(2)如在線段OB上有一點C,滿足OC=2CB,在x軸上有一點D(10,0),連接DC,且直線DC與y軸交于點E.
①求直線DC的解析式;
②如點M是直線DC上的一個動點,在x軸上方的平面內(nèi)有另一點N,且以O、E、M、N為頂點的四邊形是菱形,請求出點N的坐標.(直接寫出結(jié)果,不需要過程.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是
等腰
等腰
三角形;
(2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
(3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達式;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案