【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸負(fù)半軸于點(diǎn)C,,.
求拋物線的解析式;
點(diǎn)D在拋物線在第一象限的部分上,連接BC,DC,過點(diǎn)D作x軸的垂線,點(diǎn)E為垂足,的正切值等于的正切值的一半,求點(diǎn)D的坐標(biāo);
在的條件下,橫坐標(biāo)為t的點(diǎn)P在拋物線在第四象限的部分上,PB的延長(zhǎng)線交DE于點(diǎn)F,連接BD,OF交于點(diǎn)G,連接EG,若GB平分,求t值.
【答案】(1);(2);(3)t的值為2.
【解析】
先確定,,然后利用待定系數(shù)法求拋物線解析式;
作于H,如圖1,設(shè),再解方程得,利用正切的定義得到,則,然后解方程求出x即可得到D點(diǎn)坐標(biāo);
如圖2,先利用待定系數(shù)法求出直線BD的解析式為,設(shè),再利用角平分線的性質(zhì)定理得到GO::BE,則,所以,解方程得到,接著求出直線BD與OG的交點(diǎn)F的坐標(biāo)為,然后利用待定系數(shù)法求出直線BF的解析式為,最后解方程組得t的值.
,.
,,
把,代入得,解得,
拋物線解析式為;
作于H,如圖1,
設(shè),
當(dāng)時(shí),,解得,,則,
在中,,
的正切值等于的正切值的一半
,
在中,,
,解得得,,則;
如圖2,
設(shè)直線BD的解析式為,
把,代入得,解得,
直線BD的解析式為,
設(shè),
平分,
::BE,
即GO::2,
,
,
整理得,解得,,
,
易得直線OF的解析式為,
當(dāng)時(shí),,則,
設(shè)直線BF的解析式為,
把,代入得,解得
直線BF的解析式為,
解方程組得或,
,
即t的值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了幫助本市一名患“白血病”的高中生,某班15名同學(xué)積極捐款,他們捐款數(shù)額如下表:
捐款的數(shù)額(單位:元) | 5 | 10 | 20 | 50 | 100 |
人數(shù)(單位:個(gè)) | 2 | 4 | 5 | 3 | 1 |
關(guān)于這15名同學(xué)所捐款的數(shù)額,下列說法正確的是
A.眾數(shù)是100 B.平均數(shù)是30 C.極差是20 D.中位數(shù)是20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】梧州市特產(chǎn)批發(fā)市場(chǎng)有龜苓膏粉批發(fā),其中A品牌的批發(fā)價(jià)是每包20元,B品牌的批發(fā)價(jià)是每包25元,小王需購(gòu)買A,B兩種品牌的龜苓膏粉共1000包.
(1)若小王按需購(gòu)買A,B兩種品牌龜苓膏粉共用22000元,則各購(gòu)買多少包?
(2)憑會(huì)員卡在此批發(fā)市場(chǎng)購(gòu)買商品可以獲得8折優(yōu)惠,會(huì)員卡費(fèi)用為500元.若小王購(gòu)買會(huì)員卡并用此卡按需購(gòu)買1000包龜苓膏粉,共用了y元,設(shè)A品牌買了x包,請(qǐng)求出y與x之間的函數(shù)關(guān)系式;
(3)在(2)中,小王共用了20000元,他計(jì)劃在網(wǎng)店包郵銷售這批龜苓膏粉,每包龜苓膏粉小王需支付郵費(fèi)8元,若每包銷售價(jià)格A品牌比B品牌少5元,請(qǐng)你幫他計(jì)算,A品牌的龜苓膏粉每包定價(jià)不低于多少元時(shí)才不虧本?(運(yùn)算結(jié)果取整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,“高遠(yuǎn)”中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如下尚不完整的條形統(tǒng)計(jì)圖,且知在抽樣調(diào)查中“了解很少”的同學(xué)占抽樣調(diào)查人數(shù)的,請(qǐng)你根據(jù)提供的信息解答下列問題:
接受問卷調(diào)查的學(xué)生共有多少名?
請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
若“高遠(yuǎn)”中學(xué)共有1800名學(xué)生,請(qǐng)你估計(jì)該校學(xué)生對(duì)校園知識(shí)“基本了解”的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為∠BAC的外角平分線上一點(diǎn),并且滿足BD=CD,過D作DE⊥AC于E,DF⊥AB交BA的延長(zhǎng)線于F,則下列結(jié)論:①;②∠DBC=∠DCB;③CE=AB+AE④∠BDC=∠BAC,其中正確的結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)投影后,小明、小穎利用燈光下自己的影子長(zhǎng)度來測(cè)量一路燈的高度,并探究影子長(zhǎng)度的變化規(guī)律.如圖所示,在同一時(shí)間,身高為1.6 m的小明(AB)的影子BC長(zhǎng)是3m,而小穎(EH)剛好在路燈燈泡的正下方H點(diǎn),并測(cè)得HB=6m.
(1)請(qǐng)?jiān)趫D中畫出形成影子的光線,并確定路燈燈泡所在的位置G;
(2)求路燈燈泡的垂直高度GH;
(3)如果小明沿線段BH向小穎(點(diǎn)H)走去,當(dāng)小明走到BH中點(diǎn)B1處時(shí),求其影子B1C1的長(zhǎng);當(dāng)小明繼續(xù)走剩下的路程的到B2處時(shí),求其影子B2C2的長(zhǎng);當(dāng)小明繼續(xù)走剩下路程的到B3處時(shí),……按此規(guī)律繼續(xù)走下去,當(dāng)小明走剩下路程的到處時(shí),其影子的長(zhǎng)為________m(直接用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:選取二次三項(xiàng)式中兩項(xiàng),配成完全平方式的過程叫配方,配方的基本形式是完全平方公式的逆寫,即.例如:
①選取二次項(xiàng)和一次項(xiàng)配方:
②選取二次項(xiàng)和常數(shù)項(xiàng)配方:,或
③選取一次項(xiàng)和常數(shù)項(xiàng)配方:
請(qǐng)根據(jù)閱讀材料解決下列問題:
(1)比照上面的例子,將二次三項(xiàng)式配成完全平方式(直接寫出兩種形式);
(2)將分解因式;
(3)已知、、是的三邊長(zhǎng),且滿足,試判斷此三角形的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠A和∠B互補(bǔ),且∠A>∠B,給出下列四個(gè)式子:①90°﹣∠B;②∠A﹣90°;③∠A+∠B;④(∠A﹣∠B),其中表示∠B余角的式子有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一枚棋子放在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正六邊形
ABCDEF的頂點(diǎn)A處,通過摸球來確定該棋子的走法,其規(guī)則是:在
一只不透明的袋子中,裝有3個(gè)標(biāo)號(hào)分別為1、2、3的相同小球,攪勻
后從中任意摸出1個(gè),記下標(biāo)號(hào)后放回袋中并攪勻,再?gòu)闹腥我饷?/span>1
個(gè),摸出的兩個(gè)小球標(biāo)號(hào)之和是幾棋子就沿邊按順時(shí)針方向走幾個(gè)單位
長(zhǎng)度.
棋子走到哪一點(diǎn)的可能性最大?求出棋子走到該點(diǎn)的概率.(用列表或畫樹狀圖的方法
求解)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com