已知:AB是⊙O的直徑,直線CP切⊙O于點(diǎn)C,過(guò)點(diǎn)B作BD⊥CP于D.
(1)求證:△ACB∽△CDB;
(2)若⊙O的半徑為1,∠BCP=30°,求圖中陰影部分的面積.
考點(diǎn):切線的性質(zhì),扇形面積的計(jì)算,相似三角形的判定與性質(zhì)
專(zhuān)題:幾何綜合題
分析:(1)由CP是⊙O的切線,得出∠BCD=∠BAC,AB是直徑,得出∠ACB=90°,所以∠ACB=∠CDB=90°,得出結(jié)論△ACB∽△CDB;
(2)求出△OCB是正三角形,陰影部分的面積=S扇形OCB-S△OCB=
1
6
π-
3
4
解答:(1)證明:如圖,連接OC,

∵直線CP是⊙O的切線,
∴∠BCD+∠OCB=90°,
∵AB是直徑,
∴∠ACB=90°,
∴∠ACO+∠OCB=90°
∴∠BCD=∠ACO,
又∵∠BAC=∠ACO,
∴∠BCD=∠BAC,
又∵BD⊥CP
∴∠CDB=90°,
∴∠ACB=∠CDB=90°
∴△ACB∽△CDB;
(2)解:如圖,連接OC,

∵直線CP是⊙O的切線,∠BCP=30°,
∴∠COB=2∠BCP=60°,
∴△OCB是正三角形,
∵⊙O的半徑為1,
∴S△OCB=
3
4
,S扇形OCB=
60πr2
360
=
1
6
π,
故陰影部分的面積=S扇形OCB-S△OCB=
1
6
π-
3
4
點(diǎn)評(píng):本題主要考查了切線的性質(zhì)及扇形面積,三角形的面積,解題的關(guān)鍵是利用弦切角找角的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是(  )
A、0的平方根是0
B、9的立方根是3
C、
9
是無(wú)理數(shù)
D、
11
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,有小島A和小島B,輪船以45km/h的速度由C向東航行,在C處測(cè)得A的方位角為北偏東60°,測(cè)得B的方位角為南偏東45°,輪船航行2小時(shí)后到達(dá)小島B處,在B處測(cè)得小島A在小島B的正北方向.求小島A與小島B之間的距離(結(jié)果保留整數(shù),參考數(shù)據(jù):
2
≈1.41,
6
≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:
x2-9
x2+8x+16
÷
x-3
x+4
-
x
x+4
,其中x=
7
-4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀理解:
如圖①,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點(diǎn)”;如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強(qiáng)相似點(diǎn)”.解決問(wèn)題:

(1)如圖①,∠A=∠B=∠DEC=45°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由;
(2)如圖②,在矩形ABCD中,A、B、C、D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖②中畫(huà)出矩形ABCD的邊AB上的強(qiáng)相似點(diǎn);
(3)如圖③,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處,若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究AB與BC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解不等式組:
2x-1>-5
-x+1≥2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解不等式
1
2
x-1≤
2
3
x-
1
2
,并把它的解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若m2-2m-1=0,則代數(shù)式2m2-4m+3的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案