【題目】如圖,在△ABC中,∠B=90,∠C=30°,AB=6cmBC=6cm,動點P從點B開始沿邊BA、AC向點C3cm/s的速度移動,動點Q從點B開始沿邊BC向點Ccm/s的速度移動,動點P、Q同時出發(fā),到點C運動結(jié)束.設(shè)運動過程中△BPQ的面積為ycm2),運動時間為ts).

1)點P運動到點A,t=   s);

2)請你用含t的式子表示y

【答案】12;(2

【解析】

1)由題意即可得出答案;

2)當0≤t2時,SBPQBQBP,當2≤t時,如下圖所示,SBPQBQHP即可求解.

解:(1)點P運動到點At=6×3=2s).

故答案為:2

2)當0t2時,y=SBPQBQBP3ttt2,

yt2;

t2時,作PHBCH,如圖所示:

y=SBPQBQHPt183tt2t,

yt2t

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為,點分別為邊、上的點,,點、分別為、邊上的點,連接,若線段的夾角為,則的長為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,點CO上一點,AD與過點C的切線垂直,垂足為點D,直線DCAB的延長線相交于點P,CE平分ACB,交AB于點E

1)求證:AC平分DAB;

2)求證:PCE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為20cm,∠ABC120°.動點P、Q同時從點A出發(fā),其中P4cm/s的速度,沿ABC的路線向點C運動;Q2cm/s的速度,沿AC的路線向點C運動.當P、Q到達終點C時,整個運動隨之結(jié)束,設(shè)運動時間為t秒.

1)在點P、Q運動過程中,請判斷PQ與對角線AC的位置關(guān)系,并說明理由;

2)若點Q關(guān)于菱形ABCD的對角線交點O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N

①當t為何值時,點P、M、N在一直線上?

②當點P、MN不在一直線上時,是否存在這樣的t,使得PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,ACCB的延長線于點DE,F

1)求證:∠F+∠FEC=2∠A;

2)過B點作BM∥ACFD于點M,試探究∠MBC∠F+∠FEC的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABPBPAC于點O,EAC上一點,且AE=OC

1)求證:AP=AO;

2)求證:PE⊥AO;

3)當AE=AC,AB=10時,求線段BO的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的頂點在雙曲線的圖象上,直角邊軸上,,,連接,,則的值是(

A. 4 B. -4 C. 2 D. -2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=ACBC=BD,若,則______.(用含的代數(shù)式).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,ADC=ACB=90°,EAB的中點,

(1)求證:AC2=ABAD;

(2)求證:△AFD∽△CFE.

查看答案和解析>>

同步練習冊答案